aws.sagemaker.NotebookInstance
Explore with Pulumi AI
Provides a SageMaker AI Notebook Instance resource.
Example Usage
Basic usage
import * as pulumi from "@pulumi/pulumi";
import * as aws from "@pulumi/aws";
const ni = new aws.sagemaker.NotebookInstance("ni", {
    name: "my-notebook-instance",
    roleArn: role.arn,
    instanceType: "ml.t2.medium",
    tags: {
        Name: "foo",
    },
});
import pulumi
import pulumi_aws as aws
ni = aws.sagemaker.NotebookInstance("ni",
    name="my-notebook-instance",
    role_arn=role["arn"],
    instance_type="ml.t2.medium",
    tags={
        "Name": "foo",
    })
package main
import (
	"github.com/pulumi/pulumi-aws/sdk/v6/go/aws/sagemaker"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		_, err := sagemaker.NewNotebookInstance(ctx, "ni", &sagemaker.NotebookInstanceArgs{
			Name:         pulumi.String("my-notebook-instance"),
			RoleArn:      pulumi.Any(role.Arn),
			InstanceType: pulumi.String("ml.t2.medium"),
			Tags: pulumi.StringMap{
				"Name": pulumi.String("foo"),
			},
		})
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Aws = Pulumi.Aws;
return await Deployment.RunAsync(() => 
{
    var ni = new Aws.Sagemaker.NotebookInstance("ni", new()
    {
        Name = "my-notebook-instance",
        RoleArn = role.Arn,
        InstanceType = "ml.t2.medium",
        Tags = 
        {
            { "Name", "foo" },
        },
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.aws.sagemaker.NotebookInstance;
import com.pulumi.aws.sagemaker.NotebookInstanceArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        var ni = new NotebookInstance("ni", NotebookInstanceArgs.builder()
            .name("my-notebook-instance")
            .roleArn(role.arn())
            .instanceType("ml.t2.medium")
            .tags(Map.of("Name", "foo"))
            .build());
    }
}
resources:
  ni:
    type: aws:sagemaker:NotebookInstance
    properties:
      name: my-notebook-instance
      roleArn: ${role.arn}
      instanceType: ml.t2.medium
      tags:
        Name: foo
Code repository usage
import * as pulumi from "@pulumi/pulumi";
import * as aws from "@pulumi/aws";
const example = new aws.sagemaker.CodeRepository("example", {
    codeRepositoryName: "my-notebook-instance-code-repo",
    gitConfig: {
        repositoryUrl: "https://github.com/github/docs.git",
    },
});
const ni = new aws.sagemaker.NotebookInstance("ni", {
    name: "my-notebook-instance",
    roleArn: role.arn,
    instanceType: "ml.t2.medium",
    defaultCodeRepository: example.codeRepositoryName,
    tags: {
        Name: "foo",
    },
});
import pulumi
import pulumi_aws as aws
example = aws.sagemaker.CodeRepository("example",
    code_repository_name="my-notebook-instance-code-repo",
    git_config={
        "repository_url": "https://github.com/github/docs.git",
    })
ni = aws.sagemaker.NotebookInstance("ni",
    name="my-notebook-instance",
    role_arn=role["arn"],
    instance_type="ml.t2.medium",
    default_code_repository=example.code_repository_name,
    tags={
        "Name": "foo",
    })
package main
import (
	"github.com/pulumi/pulumi-aws/sdk/v6/go/aws/sagemaker"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		example, err := sagemaker.NewCodeRepository(ctx, "example", &sagemaker.CodeRepositoryArgs{
			CodeRepositoryName: pulumi.String("my-notebook-instance-code-repo"),
			GitConfig: &sagemaker.CodeRepositoryGitConfigArgs{
				RepositoryUrl: pulumi.String("https://github.com/github/docs.git"),
			},
		})
		if err != nil {
			return err
		}
		_, err = sagemaker.NewNotebookInstance(ctx, "ni", &sagemaker.NotebookInstanceArgs{
			Name:                  pulumi.String("my-notebook-instance"),
			RoleArn:               pulumi.Any(role.Arn),
			InstanceType:          pulumi.String("ml.t2.medium"),
			DefaultCodeRepository: example.CodeRepositoryName,
			Tags: pulumi.StringMap{
				"Name": pulumi.String("foo"),
			},
		})
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Aws = Pulumi.Aws;
return await Deployment.RunAsync(() => 
{
    var example = new Aws.Sagemaker.CodeRepository("example", new()
    {
        CodeRepositoryName = "my-notebook-instance-code-repo",
        GitConfig = new Aws.Sagemaker.Inputs.CodeRepositoryGitConfigArgs
        {
            RepositoryUrl = "https://github.com/github/docs.git",
        },
    });
    var ni = new Aws.Sagemaker.NotebookInstance("ni", new()
    {
        Name = "my-notebook-instance",
        RoleArn = role.Arn,
        InstanceType = "ml.t2.medium",
        DefaultCodeRepository = example.CodeRepositoryName,
        Tags = 
        {
            { "Name", "foo" },
        },
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.aws.sagemaker.CodeRepository;
import com.pulumi.aws.sagemaker.CodeRepositoryArgs;
import com.pulumi.aws.sagemaker.inputs.CodeRepositoryGitConfigArgs;
import com.pulumi.aws.sagemaker.NotebookInstance;
import com.pulumi.aws.sagemaker.NotebookInstanceArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        var example = new CodeRepository("example", CodeRepositoryArgs.builder()
            .codeRepositoryName("my-notebook-instance-code-repo")
            .gitConfig(CodeRepositoryGitConfigArgs.builder()
                .repositoryUrl("https://github.com/github/docs.git")
                .build())
            .build());
        var ni = new NotebookInstance("ni", NotebookInstanceArgs.builder()
            .name("my-notebook-instance")
            .roleArn(role.arn())
            .instanceType("ml.t2.medium")
            .defaultCodeRepository(example.codeRepositoryName())
            .tags(Map.of("Name", "foo"))
            .build());
    }
}
resources:
  example:
    type: aws:sagemaker:CodeRepository
    properties:
      codeRepositoryName: my-notebook-instance-code-repo
      gitConfig:
        repositoryUrl: https://github.com/github/docs.git
  ni:
    type: aws:sagemaker:NotebookInstance
    properties:
      name: my-notebook-instance
      roleArn: ${role.arn}
      instanceType: ml.t2.medium
      defaultCodeRepository: ${example.codeRepositoryName}
      tags:
        Name: foo
Create NotebookInstance Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new NotebookInstance(name: string, args: NotebookInstanceArgs, opts?: CustomResourceOptions);@overload
def NotebookInstance(resource_name: str,
                     args: NotebookInstanceArgs,
                     opts: Optional[ResourceOptions] = None)
@overload
def NotebookInstance(resource_name: str,
                     opts: Optional[ResourceOptions] = None,
                     instance_type: Optional[str] = None,
                     role_arn: Optional[str] = None,
                     name: Optional[str] = None,
                     platform_identifier: Optional[str] = None,
                     instance_metadata_service_configuration: Optional[NotebookInstanceInstanceMetadataServiceConfigurationArgs] = None,
                     default_code_repository: Optional[str] = None,
                     kms_key_id: Optional[str] = None,
                     lifecycle_config_name: Optional[str] = None,
                     accelerator_types: Optional[Sequence[str]] = None,
                     direct_internet_access: Optional[str] = None,
                     additional_code_repositories: Optional[Sequence[str]] = None,
                     root_access: Optional[str] = None,
                     security_groups: Optional[Sequence[str]] = None,
                     subnet_id: Optional[str] = None,
                     tags: Optional[Mapping[str, str]] = None,
                     volume_size: Optional[int] = None)func NewNotebookInstance(ctx *Context, name string, args NotebookInstanceArgs, opts ...ResourceOption) (*NotebookInstance, error)public NotebookInstance(string name, NotebookInstanceArgs args, CustomResourceOptions? opts = null)
public NotebookInstance(String name, NotebookInstanceArgs args)
public NotebookInstance(String name, NotebookInstanceArgs args, CustomResourceOptions options)
type: aws:sagemaker:NotebookInstance
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args NotebookInstanceArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args NotebookInstanceArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args NotebookInstanceArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args NotebookInstanceArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args NotebookInstanceArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var notebookInstanceResource = new Aws.Sagemaker.NotebookInstance("notebookInstanceResource", new()
{
    InstanceType = "string",
    RoleArn = "string",
    Name = "string",
    PlatformIdentifier = "string",
    InstanceMetadataServiceConfiguration = new Aws.Sagemaker.Inputs.NotebookInstanceInstanceMetadataServiceConfigurationArgs
    {
        MinimumInstanceMetadataServiceVersion = "string",
    },
    DefaultCodeRepository = "string",
    KmsKeyId = "string",
    LifecycleConfigName = "string",
    DirectInternetAccess = "string",
    AdditionalCodeRepositories = new[]
    {
        "string",
    },
    RootAccess = "string",
    SecurityGroups = new[]
    {
        "string",
    },
    SubnetId = "string",
    Tags = 
    {
        { "string", "string" },
    },
    VolumeSize = 0,
});
example, err := sagemaker.NewNotebookInstance(ctx, "notebookInstanceResource", &sagemaker.NotebookInstanceArgs{
	InstanceType:       pulumi.String("string"),
	RoleArn:            pulumi.String("string"),
	Name:               pulumi.String("string"),
	PlatformIdentifier: pulumi.String("string"),
	InstanceMetadataServiceConfiguration: &sagemaker.NotebookInstanceInstanceMetadataServiceConfigurationArgs{
		MinimumInstanceMetadataServiceVersion: pulumi.String("string"),
	},
	DefaultCodeRepository: pulumi.String("string"),
	KmsKeyId:              pulumi.String("string"),
	LifecycleConfigName:   pulumi.String("string"),
	DirectInternetAccess:  pulumi.String("string"),
	AdditionalCodeRepositories: pulumi.StringArray{
		pulumi.String("string"),
	},
	RootAccess: pulumi.String("string"),
	SecurityGroups: pulumi.StringArray{
		pulumi.String("string"),
	},
	SubnetId: pulumi.String("string"),
	Tags: pulumi.StringMap{
		"string": pulumi.String("string"),
	},
	VolumeSize: pulumi.Int(0),
})
var notebookInstanceResource = new NotebookInstance("notebookInstanceResource", NotebookInstanceArgs.builder()
    .instanceType("string")
    .roleArn("string")
    .name("string")
    .platformIdentifier("string")
    .instanceMetadataServiceConfiguration(NotebookInstanceInstanceMetadataServiceConfigurationArgs.builder()
        .minimumInstanceMetadataServiceVersion("string")
        .build())
    .defaultCodeRepository("string")
    .kmsKeyId("string")
    .lifecycleConfigName("string")
    .directInternetAccess("string")
    .additionalCodeRepositories("string")
    .rootAccess("string")
    .securityGroups("string")
    .subnetId("string")
    .tags(Map.of("string", "string"))
    .volumeSize(0)
    .build());
notebook_instance_resource = aws.sagemaker.NotebookInstance("notebookInstanceResource",
    instance_type="string",
    role_arn="string",
    name="string",
    platform_identifier="string",
    instance_metadata_service_configuration={
        "minimum_instance_metadata_service_version": "string",
    },
    default_code_repository="string",
    kms_key_id="string",
    lifecycle_config_name="string",
    direct_internet_access="string",
    additional_code_repositories=["string"],
    root_access="string",
    security_groups=["string"],
    subnet_id="string",
    tags={
        "string": "string",
    },
    volume_size=0)
const notebookInstanceResource = new aws.sagemaker.NotebookInstance("notebookInstanceResource", {
    instanceType: "string",
    roleArn: "string",
    name: "string",
    platformIdentifier: "string",
    instanceMetadataServiceConfiguration: {
        minimumInstanceMetadataServiceVersion: "string",
    },
    defaultCodeRepository: "string",
    kmsKeyId: "string",
    lifecycleConfigName: "string",
    directInternetAccess: "string",
    additionalCodeRepositories: ["string"],
    rootAccess: "string",
    securityGroups: ["string"],
    subnetId: "string",
    tags: {
        string: "string",
    },
    volumeSize: 0,
});
type: aws:sagemaker:NotebookInstance
properties:
    additionalCodeRepositories:
        - string
    defaultCodeRepository: string
    directInternetAccess: string
    instanceMetadataServiceConfiguration:
        minimumInstanceMetadataServiceVersion: string
    instanceType: string
    kmsKeyId: string
    lifecycleConfigName: string
    name: string
    platformIdentifier: string
    roleArn: string
    rootAccess: string
    securityGroups:
        - string
    subnetId: string
    tags:
        string: string
    volumeSize: 0
NotebookInstance Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The NotebookInstance resource accepts the following input properties:
- InstanceType string
- The name of ML compute instance type.
- RoleArn string
- The ARN of the IAM role to be used by the notebook instance which allows SageMaker AI to call other services on your behalf.
- AcceleratorTypes List<string>
- A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values: ml.eia1.medium,ml.eia1.large,ml.eia1.xlarge,ml.eia2.medium,ml.eia2.large,ml.eia2.xlarge.
- AdditionalCode List<string>Repositories 
- An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- DefaultCode stringRepository 
- The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- DirectInternet stringAccess 
- Set to Disabledto disable internet access to notebook. Requiressecurity_groupsandsubnet_idto be set. Supported values:Enabled(Default) orDisabled. If set toDisabled, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker AI training and endpoint services unless your configure a NAT Gateway in your VPC.
- InstanceMetadata NotebookService Configuration Instance Instance Metadata Service Configuration 
- Information on the IMDS configuration of the notebook instance. Conflicts with instance_metadata_service_configuration. see details below.
- KmsKey stringId 
- The AWS Key Management Service (AWS KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- LifecycleConfig stringName 
- The name of a lifecycle configuration to associate with the notebook instance.
- Name string
- The name of the notebook instance (must be unique).
- PlatformIdentifier string
- The platform identifier of the notebook instance runtime environment. This value can be either notebook-al1-v1,notebook-al2-v1,notebook-al2-v2, ornotebook-al2-v3, depending on which version of Amazon Linux you require.
- RootAccess string
- Whether root access is EnabledorDisabledfor users of the notebook instance. The default value isEnabled.
- SecurityGroups List<string>
- The associated security groups.
- SubnetId string
- The VPC subnet ID.
- Dictionary<string, string>
- A map of tags to assign to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- VolumeSize int
- The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- InstanceType string
- The name of ML compute instance type.
- RoleArn string
- The ARN of the IAM role to be used by the notebook instance which allows SageMaker AI to call other services on your behalf.
- AcceleratorTypes []string
- A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values: ml.eia1.medium,ml.eia1.large,ml.eia1.xlarge,ml.eia2.medium,ml.eia2.large,ml.eia2.xlarge.
- AdditionalCode []stringRepositories 
- An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- DefaultCode stringRepository 
- The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- DirectInternet stringAccess 
- Set to Disabledto disable internet access to notebook. Requiressecurity_groupsandsubnet_idto be set. Supported values:Enabled(Default) orDisabled. If set toDisabled, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker AI training and endpoint services unless your configure a NAT Gateway in your VPC.
- InstanceMetadata NotebookService Configuration Instance Instance Metadata Service Configuration Args 
- Information on the IMDS configuration of the notebook instance. Conflicts with instance_metadata_service_configuration. see details below.
- KmsKey stringId 
- The AWS Key Management Service (AWS KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- LifecycleConfig stringName 
- The name of a lifecycle configuration to associate with the notebook instance.
- Name string
- The name of the notebook instance (must be unique).
- PlatformIdentifier string
- The platform identifier of the notebook instance runtime environment. This value can be either notebook-al1-v1,notebook-al2-v1,notebook-al2-v2, ornotebook-al2-v3, depending on which version of Amazon Linux you require.
- RootAccess string
- Whether root access is EnabledorDisabledfor users of the notebook instance. The default value isEnabled.
- SecurityGroups []string
- The associated security groups.
- SubnetId string
- The VPC subnet ID.
- map[string]string
- A map of tags to assign to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- VolumeSize int
- The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- instanceType String
- The name of ML compute instance type.
- roleArn String
- The ARN of the IAM role to be used by the notebook instance which allows SageMaker AI to call other services on your behalf.
- acceleratorTypes List<String>
- A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values: ml.eia1.medium,ml.eia1.large,ml.eia1.xlarge,ml.eia2.medium,ml.eia2.large,ml.eia2.xlarge.
- additionalCode List<String>Repositories 
- An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- defaultCode StringRepository 
- The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- directInternet StringAccess 
- Set to Disabledto disable internet access to notebook. Requiressecurity_groupsandsubnet_idto be set. Supported values:Enabled(Default) orDisabled. If set toDisabled, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker AI training and endpoint services unless your configure a NAT Gateway in your VPC.
- instanceMetadata NotebookService Configuration Instance Instance Metadata Service Configuration 
- Information on the IMDS configuration of the notebook instance. Conflicts with instance_metadata_service_configuration. see details below.
- kmsKey StringId 
- The AWS Key Management Service (AWS KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycleConfig StringName 
- The name of a lifecycle configuration to associate with the notebook instance.
- name String
- The name of the notebook instance (must be unique).
- platformIdentifier String
- The platform identifier of the notebook instance runtime environment. This value can be either notebook-al1-v1,notebook-al2-v1,notebook-al2-v2, ornotebook-al2-v3, depending on which version of Amazon Linux you require.
- rootAccess String
- Whether root access is EnabledorDisabledfor users of the notebook instance. The default value isEnabled.
- securityGroups List<String>
- The associated security groups.
- subnetId String
- The VPC subnet ID.
- Map<String,String>
- A map of tags to assign to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- volumeSize Integer
- The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- instanceType string
- The name of ML compute instance type.
- roleArn string
- The ARN of the IAM role to be used by the notebook instance which allows SageMaker AI to call other services on your behalf.
- acceleratorTypes string[]
- A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values: ml.eia1.medium,ml.eia1.large,ml.eia1.xlarge,ml.eia2.medium,ml.eia2.large,ml.eia2.xlarge.
- additionalCode string[]Repositories 
- An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- defaultCode stringRepository 
- The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- directInternet stringAccess 
- Set to Disabledto disable internet access to notebook. Requiressecurity_groupsandsubnet_idto be set. Supported values:Enabled(Default) orDisabled. If set toDisabled, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker AI training and endpoint services unless your configure a NAT Gateway in your VPC.
- instanceMetadata NotebookService Configuration Instance Instance Metadata Service Configuration 
- Information on the IMDS configuration of the notebook instance. Conflicts with instance_metadata_service_configuration. see details below.
- kmsKey stringId 
- The AWS Key Management Service (AWS KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycleConfig stringName 
- The name of a lifecycle configuration to associate with the notebook instance.
- name string
- The name of the notebook instance (must be unique).
- platformIdentifier string
- The platform identifier of the notebook instance runtime environment. This value can be either notebook-al1-v1,notebook-al2-v1,notebook-al2-v2, ornotebook-al2-v3, depending on which version of Amazon Linux you require.
- rootAccess string
- Whether root access is EnabledorDisabledfor users of the notebook instance. The default value isEnabled.
- securityGroups string[]
- The associated security groups.
- subnetId string
- The VPC subnet ID.
- {[key: string]: string}
- A map of tags to assign to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- volumeSize number
- The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- instance_type str
- The name of ML compute instance type.
- role_arn str
- The ARN of the IAM role to be used by the notebook instance which allows SageMaker AI to call other services on your behalf.
- accelerator_types Sequence[str]
- A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values: ml.eia1.medium,ml.eia1.large,ml.eia1.xlarge,ml.eia2.medium,ml.eia2.large,ml.eia2.xlarge.
- additional_code_ Sequence[str]repositories 
- An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- default_code_ strrepository 
- The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- direct_internet_ straccess 
- Set to Disabledto disable internet access to notebook. Requiressecurity_groupsandsubnet_idto be set. Supported values:Enabled(Default) orDisabled. If set toDisabled, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker AI training and endpoint services unless your configure a NAT Gateway in your VPC.
- instance_metadata_ Notebookservice_ configuration Instance Instance Metadata Service Configuration Args 
- Information on the IMDS configuration of the notebook instance. Conflicts with instance_metadata_service_configuration. see details below.
- kms_key_ strid 
- The AWS Key Management Service (AWS KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycle_config_ strname 
- The name of a lifecycle configuration to associate with the notebook instance.
- name str
- The name of the notebook instance (must be unique).
- platform_identifier str
- The platform identifier of the notebook instance runtime environment. This value can be either notebook-al1-v1,notebook-al2-v1,notebook-al2-v2, ornotebook-al2-v3, depending on which version of Amazon Linux you require.
- root_access str
- Whether root access is EnabledorDisabledfor users of the notebook instance. The default value isEnabled.
- security_groups Sequence[str]
- The associated security groups.
- subnet_id str
- The VPC subnet ID.
- Mapping[str, str]
- A map of tags to assign to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- volume_size int
- The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- instanceType String
- The name of ML compute instance type.
- roleArn String
- The ARN of the IAM role to be used by the notebook instance which allows SageMaker AI to call other services on your behalf.
- acceleratorTypes List<String>
- A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values: ml.eia1.medium,ml.eia1.large,ml.eia1.xlarge,ml.eia2.medium,ml.eia2.large,ml.eia2.xlarge.
- additionalCode List<String>Repositories 
- An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- defaultCode StringRepository 
- The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- directInternet StringAccess 
- Set to Disabledto disable internet access to notebook. Requiressecurity_groupsandsubnet_idto be set. Supported values:Enabled(Default) orDisabled. If set toDisabled, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker AI training and endpoint services unless your configure a NAT Gateway in your VPC.
- instanceMetadata Property MapService Configuration 
- Information on the IMDS configuration of the notebook instance. Conflicts with instance_metadata_service_configuration. see details below.
- kmsKey StringId 
- The AWS Key Management Service (AWS KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycleConfig StringName 
- The name of a lifecycle configuration to associate with the notebook instance.
- name String
- The name of the notebook instance (must be unique).
- platformIdentifier String
- The platform identifier of the notebook instance runtime environment. This value can be either notebook-al1-v1,notebook-al2-v1,notebook-al2-v2, ornotebook-al2-v3, depending on which version of Amazon Linux you require.
- rootAccess String
- Whether root access is EnabledorDisabledfor users of the notebook instance. The default value isEnabled.
- securityGroups List<String>
- The associated security groups.
- subnetId String
- The VPC subnet ID.
- Map<String>
- A map of tags to assign to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- volumeSize Number
- The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
Outputs
All input properties are implicitly available as output properties. Additionally, the NotebookInstance resource produces the following output properties:
- Arn string
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- Id string
- The provider-assigned unique ID for this managed resource.
- NetworkInterface stringId 
- The network interface ID that Amazon SageMaker AI created at the time of creating the instance. Only available when setting subnet_id.
- Dictionary<string, string>
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- Url string
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- Arn string
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- Id string
- The provider-assigned unique ID for this managed resource.
- NetworkInterface stringId 
- The network interface ID that Amazon SageMaker AI created at the time of creating the instance. Only available when setting subnet_id.
- map[string]string
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- Url string
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- arn String
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- id String
- The provider-assigned unique ID for this managed resource.
- networkInterface StringId 
- The network interface ID that Amazon SageMaker AI created at the time of creating the instance. Only available when setting subnet_id.
- Map<String,String>
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- url String
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- arn string
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- id string
- The provider-assigned unique ID for this managed resource.
- networkInterface stringId 
- The network interface ID that Amazon SageMaker AI created at the time of creating the instance. Only available when setting subnet_id.
- {[key: string]: string}
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- url string
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- arn str
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- id str
- The provider-assigned unique ID for this managed resource.
- network_interface_ strid 
- The network interface ID that Amazon SageMaker AI created at the time of creating the instance. Only available when setting subnet_id.
- Mapping[str, str]
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- url str
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- arn String
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- id String
- The provider-assigned unique ID for this managed resource.
- networkInterface StringId 
- The network interface ID that Amazon SageMaker AI created at the time of creating the instance. Only available when setting subnet_id.
- Map<String>
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- url String
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
Look up Existing NotebookInstance Resource
Get an existing NotebookInstance resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: NotebookInstanceState, opts?: CustomResourceOptions): NotebookInstance@staticmethod
def get(resource_name: str,
        id: str,
        opts: Optional[ResourceOptions] = None,
        accelerator_types: Optional[Sequence[str]] = None,
        additional_code_repositories: Optional[Sequence[str]] = None,
        arn: Optional[str] = None,
        default_code_repository: Optional[str] = None,
        direct_internet_access: Optional[str] = None,
        instance_metadata_service_configuration: Optional[NotebookInstanceInstanceMetadataServiceConfigurationArgs] = None,
        instance_type: Optional[str] = None,
        kms_key_id: Optional[str] = None,
        lifecycle_config_name: Optional[str] = None,
        name: Optional[str] = None,
        network_interface_id: Optional[str] = None,
        platform_identifier: Optional[str] = None,
        role_arn: Optional[str] = None,
        root_access: Optional[str] = None,
        security_groups: Optional[Sequence[str]] = None,
        subnet_id: Optional[str] = None,
        tags: Optional[Mapping[str, str]] = None,
        tags_all: Optional[Mapping[str, str]] = None,
        url: Optional[str] = None,
        volume_size: Optional[int] = None) -> NotebookInstancefunc GetNotebookInstance(ctx *Context, name string, id IDInput, state *NotebookInstanceState, opts ...ResourceOption) (*NotebookInstance, error)public static NotebookInstance Get(string name, Input<string> id, NotebookInstanceState? state, CustomResourceOptions? opts = null)public static NotebookInstance get(String name, Output<String> id, NotebookInstanceState state, CustomResourceOptions options)resources:  _:    type: aws:sagemaker:NotebookInstance    get:      id: ${id}- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- AcceleratorTypes List<string>
- A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values: ml.eia1.medium,ml.eia1.large,ml.eia1.xlarge,ml.eia2.medium,ml.eia2.large,ml.eia2.xlarge.
- AdditionalCode List<string>Repositories 
- An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- Arn string
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- DefaultCode stringRepository 
- The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- DirectInternet stringAccess 
- Set to Disabledto disable internet access to notebook. Requiressecurity_groupsandsubnet_idto be set. Supported values:Enabled(Default) orDisabled. If set toDisabled, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker AI training and endpoint services unless your configure a NAT Gateway in your VPC.
- InstanceMetadata NotebookService Configuration Instance Instance Metadata Service Configuration 
- Information on the IMDS configuration of the notebook instance. Conflicts with instance_metadata_service_configuration. see details below.
- InstanceType string
- The name of ML compute instance type.
- KmsKey stringId 
- The AWS Key Management Service (AWS KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- LifecycleConfig stringName 
- The name of a lifecycle configuration to associate with the notebook instance.
- Name string
- The name of the notebook instance (must be unique).
- NetworkInterface stringId 
- The network interface ID that Amazon SageMaker AI created at the time of creating the instance. Only available when setting subnet_id.
- PlatformIdentifier string
- The platform identifier of the notebook instance runtime environment. This value can be either notebook-al1-v1,notebook-al2-v1,notebook-al2-v2, ornotebook-al2-v3, depending on which version of Amazon Linux you require.
- RoleArn string
- The ARN of the IAM role to be used by the notebook instance which allows SageMaker AI to call other services on your behalf.
- RootAccess string
- Whether root access is EnabledorDisabledfor users of the notebook instance. The default value isEnabled.
- SecurityGroups List<string>
- The associated security groups.
- SubnetId string
- The VPC subnet ID.
- Dictionary<string, string>
- A map of tags to assign to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Dictionary<string, string>
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- Url string
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- VolumeSize int
- The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- AcceleratorTypes []string
- A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values: ml.eia1.medium,ml.eia1.large,ml.eia1.xlarge,ml.eia2.medium,ml.eia2.large,ml.eia2.xlarge.
- AdditionalCode []stringRepositories 
- An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- Arn string
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- DefaultCode stringRepository 
- The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- DirectInternet stringAccess 
- Set to Disabledto disable internet access to notebook. Requiressecurity_groupsandsubnet_idto be set. Supported values:Enabled(Default) orDisabled. If set toDisabled, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker AI training and endpoint services unless your configure a NAT Gateway in your VPC.
- InstanceMetadata NotebookService Configuration Instance Instance Metadata Service Configuration Args 
- Information on the IMDS configuration of the notebook instance. Conflicts with instance_metadata_service_configuration. see details below.
- InstanceType string
- The name of ML compute instance type.
- KmsKey stringId 
- The AWS Key Management Service (AWS KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- LifecycleConfig stringName 
- The name of a lifecycle configuration to associate with the notebook instance.
- Name string
- The name of the notebook instance (must be unique).
- NetworkInterface stringId 
- The network interface ID that Amazon SageMaker AI created at the time of creating the instance. Only available when setting subnet_id.
- PlatformIdentifier string
- The platform identifier of the notebook instance runtime environment. This value can be either notebook-al1-v1,notebook-al2-v1,notebook-al2-v2, ornotebook-al2-v3, depending on which version of Amazon Linux you require.
- RoleArn string
- The ARN of the IAM role to be used by the notebook instance which allows SageMaker AI to call other services on your behalf.
- RootAccess string
- Whether root access is EnabledorDisabledfor users of the notebook instance. The default value isEnabled.
- SecurityGroups []string
- The associated security groups.
- SubnetId string
- The VPC subnet ID.
- map[string]string
- A map of tags to assign to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- map[string]string
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- Url string
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- VolumeSize int
- The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- acceleratorTypes List<String>
- A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values: ml.eia1.medium,ml.eia1.large,ml.eia1.xlarge,ml.eia2.medium,ml.eia2.large,ml.eia2.xlarge.
- additionalCode List<String>Repositories 
- An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- arn String
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- defaultCode StringRepository 
- The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- directInternet StringAccess 
- Set to Disabledto disable internet access to notebook. Requiressecurity_groupsandsubnet_idto be set. Supported values:Enabled(Default) orDisabled. If set toDisabled, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker AI training and endpoint services unless your configure a NAT Gateway in your VPC.
- instanceMetadata NotebookService Configuration Instance Instance Metadata Service Configuration 
- Information on the IMDS configuration of the notebook instance. Conflicts with instance_metadata_service_configuration. see details below.
- instanceType String
- The name of ML compute instance type.
- kmsKey StringId 
- The AWS Key Management Service (AWS KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycleConfig StringName 
- The name of a lifecycle configuration to associate with the notebook instance.
- name String
- The name of the notebook instance (must be unique).
- networkInterface StringId 
- The network interface ID that Amazon SageMaker AI created at the time of creating the instance. Only available when setting subnet_id.
- platformIdentifier String
- The platform identifier of the notebook instance runtime environment. This value can be either notebook-al1-v1,notebook-al2-v1,notebook-al2-v2, ornotebook-al2-v3, depending on which version of Amazon Linux you require.
- roleArn String
- The ARN of the IAM role to be used by the notebook instance which allows SageMaker AI to call other services on your behalf.
- rootAccess String
- Whether root access is EnabledorDisabledfor users of the notebook instance. The default value isEnabled.
- securityGroups List<String>
- The associated security groups.
- subnetId String
- The VPC subnet ID.
- Map<String,String>
- A map of tags to assign to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Map<String,String>
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- url String
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- volumeSize Integer
- The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- acceleratorTypes string[]
- A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values: ml.eia1.medium,ml.eia1.large,ml.eia1.xlarge,ml.eia2.medium,ml.eia2.large,ml.eia2.xlarge.
- additionalCode string[]Repositories 
- An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- arn string
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- defaultCode stringRepository 
- The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- directInternet stringAccess 
- Set to Disabledto disable internet access to notebook. Requiressecurity_groupsandsubnet_idto be set. Supported values:Enabled(Default) orDisabled. If set toDisabled, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker AI training and endpoint services unless your configure a NAT Gateway in your VPC.
- instanceMetadata NotebookService Configuration Instance Instance Metadata Service Configuration 
- Information on the IMDS configuration of the notebook instance. Conflicts with instance_metadata_service_configuration. see details below.
- instanceType string
- The name of ML compute instance type.
- kmsKey stringId 
- The AWS Key Management Service (AWS KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycleConfig stringName 
- The name of a lifecycle configuration to associate with the notebook instance.
- name string
- The name of the notebook instance (must be unique).
- networkInterface stringId 
- The network interface ID that Amazon SageMaker AI created at the time of creating the instance. Only available when setting subnet_id.
- platformIdentifier string
- The platform identifier of the notebook instance runtime environment. This value can be either notebook-al1-v1,notebook-al2-v1,notebook-al2-v2, ornotebook-al2-v3, depending on which version of Amazon Linux you require.
- roleArn string
- The ARN of the IAM role to be used by the notebook instance which allows SageMaker AI to call other services on your behalf.
- rootAccess string
- Whether root access is EnabledorDisabledfor users of the notebook instance. The default value isEnabled.
- securityGroups string[]
- The associated security groups.
- subnetId string
- The VPC subnet ID.
- {[key: string]: string}
- A map of tags to assign to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- {[key: string]: string}
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- url string
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- volumeSize number
- The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- accelerator_types Sequence[str]
- A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values: ml.eia1.medium,ml.eia1.large,ml.eia1.xlarge,ml.eia2.medium,ml.eia2.large,ml.eia2.xlarge.
- additional_code_ Sequence[str]repositories 
- An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- arn str
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- default_code_ strrepository 
- The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- direct_internet_ straccess 
- Set to Disabledto disable internet access to notebook. Requiressecurity_groupsandsubnet_idto be set. Supported values:Enabled(Default) orDisabled. If set toDisabled, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker AI training and endpoint services unless your configure a NAT Gateway in your VPC.
- instance_metadata_ Notebookservice_ configuration Instance Instance Metadata Service Configuration Args 
- Information on the IMDS configuration of the notebook instance. Conflicts with instance_metadata_service_configuration. see details below.
- instance_type str
- The name of ML compute instance type.
- kms_key_ strid 
- The AWS Key Management Service (AWS KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycle_config_ strname 
- The name of a lifecycle configuration to associate with the notebook instance.
- name str
- The name of the notebook instance (must be unique).
- network_interface_ strid 
- The network interface ID that Amazon SageMaker AI created at the time of creating the instance. Only available when setting subnet_id.
- platform_identifier str
- The platform identifier of the notebook instance runtime environment. This value can be either notebook-al1-v1,notebook-al2-v1,notebook-al2-v2, ornotebook-al2-v3, depending on which version of Amazon Linux you require.
- role_arn str
- The ARN of the IAM role to be used by the notebook instance which allows SageMaker AI to call other services on your behalf.
- root_access str
- Whether root access is EnabledorDisabledfor users of the notebook instance. The default value isEnabled.
- security_groups Sequence[str]
- The associated security groups.
- subnet_id str
- The VPC subnet ID.
- Mapping[str, str]
- A map of tags to assign to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Mapping[str, str]
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- url str
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- volume_size int
- The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
- acceleratorTypes List<String>
- A list of Elastic Inference (EI) instance types to associate with this notebook instance. See Elastic Inference Accelerator for more details. Valid values: ml.eia1.medium,ml.eia1.large,ml.eia1.xlarge,ml.eia2.medium,ml.eia2.large,ml.eia2.xlarge.
- additionalCode List<String>Repositories 
- An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance.
- arn String
- The Amazon Resource Name (ARN) assigned by AWS to this notebook instance.
- defaultCode StringRepository 
- The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository.
- directInternet StringAccess 
- Set to Disabledto disable internet access to notebook. Requiressecurity_groupsandsubnet_idto be set. Supported values:Enabled(Default) orDisabled. If set toDisabled, the notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker AI training and endpoint services unless your configure a NAT Gateway in your VPC.
- instanceMetadata Property MapService Configuration 
- Information on the IMDS configuration of the notebook instance. Conflicts with instance_metadata_service_configuration. see details below.
- instanceType String
- The name of ML compute instance type.
- kmsKey StringId 
- The AWS Key Management Service (AWS KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- lifecycleConfig StringName 
- The name of a lifecycle configuration to associate with the notebook instance.
- name String
- The name of the notebook instance (must be unique).
- networkInterface StringId 
- The network interface ID that Amazon SageMaker AI created at the time of creating the instance. Only available when setting subnet_id.
- platformIdentifier String
- The platform identifier of the notebook instance runtime environment. This value can be either notebook-al1-v1,notebook-al2-v1,notebook-al2-v2, ornotebook-al2-v3, depending on which version of Amazon Linux you require.
- roleArn String
- The ARN of the IAM role to be used by the notebook instance which allows SageMaker AI to call other services on your behalf.
- rootAccess String
- Whether root access is EnabledorDisabledfor users of the notebook instance. The default value isEnabled.
- securityGroups List<String>
- The associated security groups.
- subnetId String
- The VPC subnet ID.
- Map<String>
- A map of tags to assign to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Map<String>
- A map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- url String
- The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
- volumeSize Number
- The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
Supporting Types
NotebookInstanceInstanceMetadataServiceConfiguration, NotebookInstanceInstanceMetadataServiceConfigurationArgs            
- MinimumInstance stringMetadata Service Version 
- Indicates the minimum IMDS version that the notebook instance supports. When passed "1" is passed. This means that both IMDSv1 and IMDSv2 are supported. Valid values are 1and2.
- MinimumInstance stringMetadata Service Version 
- Indicates the minimum IMDS version that the notebook instance supports. When passed "1" is passed. This means that both IMDSv1 and IMDSv2 are supported. Valid values are 1and2.
- minimumInstance StringMetadata Service Version 
- Indicates the minimum IMDS version that the notebook instance supports. When passed "1" is passed. This means that both IMDSv1 and IMDSv2 are supported. Valid values are 1and2.
- minimumInstance stringMetadata Service Version 
- Indicates the minimum IMDS version that the notebook instance supports. When passed "1" is passed. This means that both IMDSv1 and IMDSv2 are supported. Valid values are 1and2.
- minimum_instance_ strmetadata_ service_ version 
- Indicates the minimum IMDS version that the notebook instance supports. When passed "1" is passed. This means that both IMDSv1 and IMDSv2 are supported. Valid values are 1and2.
- minimumInstance StringMetadata Service Version 
- Indicates the minimum IMDS version that the notebook instance supports. When passed "1" is passed. This means that both IMDSv1 and IMDSv2 are supported. Valid values are 1and2.
Import
Using pulumi import, import SageMaker AI Notebook Instances using the name. For example:
$ pulumi import aws:sagemaker/notebookInstance:NotebookInstance test_notebook_instance my-notebook-instance
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- AWS Classic pulumi/pulumi-aws
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the awsTerraform Provider.