aws.bedrock.AgentKnowledgeBase
Explore with Pulumi AI
Resource for managing an AWS Agents for Amazon Bedrock Knowledge Base.
Example Usage
Basic Usage
import * as pulumi from "@pulumi/pulumi";
import * as aws from "@pulumi/aws";
const example = new aws.bedrock.AgentKnowledgeBase("example", {
    name: "example",
    roleArn: exampleAwsIamRole.arn,
    knowledgeBaseConfiguration: {
        vectorKnowledgeBaseConfiguration: {
            embeddingModelArn: "arn:aws:bedrock:us-west-2::foundation-model/amazon.titan-embed-text-v2:0",
        },
        type: "VECTOR",
    },
    storageConfiguration: {
        type: "OPENSEARCH_SERVERLESS",
        opensearchServerlessConfiguration: {
            collectionArn: "arn:aws:aoss:us-west-2:123456789012:collection/142bezjddq707i5stcrf",
            vectorIndexName: "bedrock-knowledge-base-default-index",
            fieldMapping: {
                vectorField: "bedrock-knowledge-base-default-vector",
                textField: "AMAZON_BEDROCK_TEXT_CHUNK",
                metadataField: "AMAZON_BEDROCK_METADATA",
            },
        },
    },
});
import pulumi
import pulumi_aws as aws
example = aws.bedrock.AgentKnowledgeBase("example",
    name="example",
    role_arn=example_aws_iam_role["arn"],
    knowledge_base_configuration={
        "vector_knowledge_base_configuration": {
            "embedding_model_arn": "arn:aws:bedrock:us-west-2::foundation-model/amazon.titan-embed-text-v2:0",
        },
        "type": "VECTOR",
    },
    storage_configuration={
        "type": "OPENSEARCH_SERVERLESS",
        "opensearch_serverless_configuration": {
            "collection_arn": "arn:aws:aoss:us-west-2:123456789012:collection/142bezjddq707i5stcrf",
            "vector_index_name": "bedrock-knowledge-base-default-index",
            "field_mapping": {
                "vector_field": "bedrock-knowledge-base-default-vector",
                "text_field": "AMAZON_BEDROCK_TEXT_CHUNK",
                "metadata_field": "AMAZON_BEDROCK_METADATA",
            },
        },
    })
package main
import (
	"github.com/pulumi/pulumi-aws/sdk/v6/go/aws/bedrock"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		_, err := bedrock.NewAgentKnowledgeBase(ctx, "example", &bedrock.AgentKnowledgeBaseArgs{
			Name:    pulumi.String("example"),
			RoleArn: pulumi.Any(exampleAwsIamRole.Arn),
			KnowledgeBaseConfiguration: &bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationArgs{
				VectorKnowledgeBaseConfiguration: &bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationArgs{
					EmbeddingModelArn: pulumi.String("arn:aws:bedrock:us-west-2::foundation-model/amazon.titan-embed-text-v2:0"),
				},
				Type: pulumi.String("VECTOR"),
			},
			StorageConfiguration: &bedrock.AgentKnowledgeBaseStorageConfigurationArgs{
				Type: pulumi.String("OPENSEARCH_SERVERLESS"),
				OpensearchServerlessConfiguration: &bedrock.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationArgs{
					CollectionArn:   pulumi.String("arn:aws:aoss:us-west-2:123456789012:collection/142bezjddq707i5stcrf"),
					VectorIndexName: pulumi.String("bedrock-knowledge-base-default-index"),
					FieldMapping: &bedrock.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationFieldMappingArgs{
						VectorField:   pulumi.String("bedrock-knowledge-base-default-vector"),
						TextField:     pulumi.String("AMAZON_BEDROCK_TEXT_CHUNK"),
						MetadataField: pulumi.String("AMAZON_BEDROCK_METADATA"),
					},
				},
			},
		})
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Aws = Pulumi.Aws;
return await Deployment.RunAsync(() => 
{
    var example = new Aws.Bedrock.AgentKnowledgeBase("example", new()
    {
        Name = "example",
        RoleArn = exampleAwsIamRole.Arn,
        KnowledgeBaseConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationArgs
        {
            VectorKnowledgeBaseConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationArgs
            {
                EmbeddingModelArn = "arn:aws:bedrock:us-west-2::foundation-model/amazon.titan-embed-text-v2:0",
            },
            Type = "VECTOR",
        },
        StorageConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseStorageConfigurationArgs
        {
            Type = "OPENSEARCH_SERVERLESS",
            OpensearchServerlessConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationArgs
            {
                CollectionArn = "arn:aws:aoss:us-west-2:123456789012:collection/142bezjddq707i5stcrf",
                VectorIndexName = "bedrock-knowledge-base-default-index",
                FieldMapping = new Aws.Bedrock.Inputs.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationFieldMappingArgs
                {
                    VectorField = "bedrock-knowledge-base-default-vector",
                    TextField = "AMAZON_BEDROCK_TEXT_CHUNK",
                    MetadataField = "AMAZON_BEDROCK_METADATA",
                },
            },
        },
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.aws.bedrock.AgentKnowledgeBase;
import com.pulumi.aws.bedrock.AgentKnowledgeBaseArgs;
import com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationArgs;
import com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationArgs;
import com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseStorageConfigurationArgs;
import com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationArgs;
import com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationFieldMappingArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        var example = new AgentKnowledgeBase("example", AgentKnowledgeBaseArgs.builder()
            .name("example")
            .roleArn(exampleAwsIamRole.arn())
            .knowledgeBaseConfiguration(AgentKnowledgeBaseKnowledgeBaseConfigurationArgs.builder()
                .vectorKnowledgeBaseConfiguration(AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationArgs.builder()
                    .embeddingModelArn("arn:aws:bedrock:us-west-2::foundation-model/amazon.titan-embed-text-v2:0")
                    .build())
                .type("VECTOR")
                .build())
            .storageConfiguration(AgentKnowledgeBaseStorageConfigurationArgs.builder()
                .type("OPENSEARCH_SERVERLESS")
                .opensearchServerlessConfiguration(AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationArgs.builder()
                    .collectionArn("arn:aws:aoss:us-west-2:123456789012:collection/142bezjddq707i5stcrf")
                    .vectorIndexName("bedrock-knowledge-base-default-index")
                    .fieldMapping(AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationFieldMappingArgs.builder()
                        .vectorField("bedrock-knowledge-base-default-vector")
                        .textField("AMAZON_BEDROCK_TEXT_CHUNK")
                        .metadataField("AMAZON_BEDROCK_METADATA")
                        .build())
                    .build())
                .build())
            .build());
    }
}
resources:
  example:
    type: aws:bedrock:AgentKnowledgeBase
    properties:
      name: example
      roleArn: ${exampleAwsIamRole.arn}
      knowledgeBaseConfiguration:
        vectorKnowledgeBaseConfiguration:
          embeddingModelArn: arn:aws:bedrock:us-west-2::foundation-model/amazon.titan-embed-text-v2:0
        type: VECTOR
      storageConfiguration:
        type: OPENSEARCH_SERVERLESS
        opensearchServerlessConfiguration:
          collectionArn: arn:aws:aoss:us-west-2:123456789012:collection/142bezjddq707i5stcrf
          vectorIndexName: bedrock-knowledge-base-default-index
          fieldMapping:
            vectorField: bedrock-knowledge-base-default-vector
            textField: AMAZON_BEDROCK_TEXT_CHUNK
            metadataField: AMAZON_BEDROCK_METADATA
With Supplemental Data Storage Configuration
import * as pulumi from "@pulumi/pulumi";
import * as aws from "@pulumi/aws";
const example = new aws.bedrock.AgentKnowledgeBase("example", {
    name: "example",
    roleArn: exampleAwsIamRole.arn,
    knowledgeBaseConfiguration: {
        vectorKnowledgeBaseConfiguration: {
            embeddingModelArn: "arn:aws:bedrock:us-west-2::foundation-model/amazon.titan-embed-text-v2:0",
            embeddingModelConfiguration: {
                bedrockEmbeddingModelConfiguration: {
                    dimensions: 1024,
                    embeddingDataType: "FLOAT32",
                },
            },
            supplementalDataStorageConfiguration: {
                storageLocations: [{
                    type: "S3",
                    s3Location: {
                        uri: "s3://my-bucket/chunk-processor/",
                    },
                }],
            },
        },
        type: "VECTOR",
    },
    storageConfiguration: {
        type: "OPENSEARCH_SERVERLESS",
        opensearchServerlessConfiguration: {
            collectionArn: "arn:aws:aoss:us-west-2:123456789012:collection/142bezjddq707i5stcrf",
            vectorIndexName: "bedrock-knowledge-base-default-index",
            fieldMapping: {
                vectorField: "bedrock-knowledge-base-default-vector",
                textField: "AMAZON_BEDROCK_TEXT_CHUNK",
                metadataField: "AMAZON_BEDROCK_METADATA",
            },
        },
    },
});
import pulumi
import pulumi_aws as aws
example = aws.bedrock.AgentKnowledgeBase("example",
    name="example",
    role_arn=example_aws_iam_role["arn"],
    knowledge_base_configuration={
        "vector_knowledge_base_configuration": {
            "embedding_model_arn": "arn:aws:bedrock:us-west-2::foundation-model/amazon.titan-embed-text-v2:0",
            "embedding_model_configuration": {
                "bedrock_embedding_model_configuration": {
                    "dimensions": 1024,
                    "embedding_data_type": "FLOAT32",
                },
            },
            "supplemental_data_storage_configuration": {
                "storage_locations": [{
                    "type": "S3",
                    "s3_location": {
                        "uri": "s3://my-bucket/chunk-processor/",
                    },
                }],
            },
        },
        "type": "VECTOR",
    },
    storage_configuration={
        "type": "OPENSEARCH_SERVERLESS",
        "opensearch_serverless_configuration": {
            "collection_arn": "arn:aws:aoss:us-west-2:123456789012:collection/142bezjddq707i5stcrf",
            "vector_index_name": "bedrock-knowledge-base-default-index",
            "field_mapping": {
                "vector_field": "bedrock-knowledge-base-default-vector",
                "text_field": "AMAZON_BEDROCK_TEXT_CHUNK",
                "metadata_field": "AMAZON_BEDROCK_METADATA",
            },
        },
    })
package main
import (
	"github.com/pulumi/pulumi-aws/sdk/v6/go/aws/bedrock"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		_, err := bedrock.NewAgentKnowledgeBase(ctx, "example", &bedrock.AgentKnowledgeBaseArgs{
			Name:    pulumi.String("example"),
			RoleArn: pulumi.Any(exampleAwsIamRole.Arn),
			KnowledgeBaseConfiguration: &bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationArgs{
				VectorKnowledgeBaseConfiguration: &bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationArgs{
					EmbeddingModelArn: pulumi.String("arn:aws:bedrock:us-west-2::foundation-model/amazon.titan-embed-text-v2:0"),
					EmbeddingModelConfiguration: &bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationArgs{
						BedrockEmbeddingModelConfiguration: &bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationBedrockEmbeddingModelConfigurationArgs{
							Dimensions:        pulumi.Int(1024),
							EmbeddingDataType: pulumi.String("FLOAT32"),
						},
					},
					SupplementalDataStorageConfiguration: &bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationArgs{
						StorageLocations: bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationArray{
							&bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationArgs{
								Type: pulumi.String("S3"),
								S3Location: &bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationS3LocationArgs{
									Uri: pulumi.String("s3://my-bucket/chunk-processor/"),
								},
							},
						},
					},
				},
				Type: pulumi.String("VECTOR"),
			},
			StorageConfiguration: &bedrock.AgentKnowledgeBaseStorageConfigurationArgs{
				Type: pulumi.String("OPENSEARCH_SERVERLESS"),
				OpensearchServerlessConfiguration: &bedrock.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationArgs{
					CollectionArn:   pulumi.String("arn:aws:aoss:us-west-2:123456789012:collection/142bezjddq707i5stcrf"),
					VectorIndexName: pulumi.String("bedrock-knowledge-base-default-index"),
					FieldMapping: &bedrock.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationFieldMappingArgs{
						VectorField:   pulumi.String("bedrock-knowledge-base-default-vector"),
						TextField:     pulumi.String("AMAZON_BEDROCK_TEXT_CHUNK"),
						MetadataField: pulumi.String("AMAZON_BEDROCK_METADATA"),
					},
				},
			},
		})
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Aws = Pulumi.Aws;
return await Deployment.RunAsync(() => 
{
    var example = new Aws.Bedrock.AgentKnowledgeBase("example", new()
    {
        Name = "example",
        RoleArn = exampleAwsIamRole.Arn,
        KnowledgeBaseConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationArgs
        {
            VectorKnowledgeBaseConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationArgs
            {
                EmbeddingModelArn = "arn:aws:bedrock:us-west-2::foundation-model/amazon.titan-embed-text-v2:0",
                EmbeddingModelConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationArgs
                {
                    BedrockEmbeddingModelConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationBedrockEmbeddingModelConfigurationArgs
                    {
                        Dimensions = 1024,
                        EmbeddingDataType = "FLOAT32",
                    },
                },
                SupplementalDataStorageConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationArgs
                {
                    StorageLocations = new[]
                    {
                        new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationArgs
                        {
                            Type = "S3",
                            S3Location = new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationS3LocationArgs
                            {
                                Uri = "s3://my-bucket/chunk-processor/",
                            },
                        },
                    },
                },
            },
            Type = "VECTOR",
        },
        StorageConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseStorageConfigurationArgs
        {
            Type = "OPENSEARCH_SERVERLESS",
            OpensearchServerlessConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationArgs
            {
                CollectionArn = "arn:aws:aoss:us-west-2:123456789012:collection/142bezjddq707i5stcrf",
                VectorIndexName = "bedrock-knowledge-base-default-index",
                FieldMapping = new Aws.Bedrock.Inputs.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationFieldMappingArgs
                {
                    VectorField = "bedrock-knowledge-base-default-vector",
                    TextField = "AMAZON_BEDROCK_TEXT_CHUNK",
                    MetadataField = "AMAZON_BEDROCK_METADATA",
                },
            },
        },
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.aws.bedrock.AgentKnowledgeBase;
import com.pulumi.aws.bedrock.AgentKnowledgeBaseArgs;
import com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationArgs;
import com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationArgs;
import com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationArgs;
import com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationBedrockEmbeddingModelConfigurationArgs;
import com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationArgs;
import com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseStorageConfigurationArgs;
import com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationArgs;
import com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationFieldMappingArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        var example = new AgentKnowledgeBase("example", AgentKnowledgeBaseArgs.builder()
            .name("example")
            .roleArn(exampleAwsIamRole.arn())
            .knowledgeBaseConfiguration(AgentKnowledgeBaseKnowledgeBaseConfigurationArgs.builder()
                .vectorKnowledgeBaseConfiguration(AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationArgs.builder()
                    .embeddingModelArn("arn:aws:bedrock:us-west-2::foundation-model/amazon.titan-embed-text-v2:0")
                    .embeddingModelConfiguration(AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationArgs.builder()
                        .bedrockEmbeddingModelConfiguration(AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationBedrockEmbeddingModelConfigurationArgs.builder()
                            .dimensions(1024)
                            .embeddingDataType("FLOAT32")
                            .build())
                        .build())
                    .supplementalDataStorageConfiguration(AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationArgs.builder()
                        .storageLocations(AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationArgs.builder()
                            .type("S3")
                            .s3Location(AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationS3LocationArgs.builder()
                                .uri("s3://my-bucket/chunk-processor/")
                                .build())
                            .build())
                        .build())
                    .build())
                .type("VECTOR")
                .build())
            .storageConfiguration(AgentKnowledgeBaseStorageConfigurationArgs.builder()
                .type("OPENSEARCH_SERVERLESS")
                .opensearchServerlessConfiguration(AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationArgs.builder()
                    .collectionArn("arn:aws:aoss:us-west-2:123456789012:collection/142bezjddq707i5stcrf")
                    .vectorIndexName("bedrock-knowledge-base-default-index")
                    .fieldMapping(AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationFieldMappingArgs.builder()
                        .vectorField("bedrock-knowledge-base-default-vector")
                        .textField("AMAZON_BEDROCK_TEXT_CHUNK")
                        .metadataField("AMAZON_BEDROCK_METADATA")
                        .build())
                    .build())
                .build())
            .build());
    }
}
resources:
  example:
    type: aws:bedrock:AgentKnowledgeBase
    properties:
      name: example
      roleArn: ${exampleAwsIamRole.arn}
      knowledgeBaseConfiguration:
        vectorKnowledgeBaseConfiguration:
          embeddingModelArn: arn:aws:bedrock:us-west-2::foundation-model/amazon.titan-embed-text-v2:0
          embeddingModelConfiguration:
            bedrockEmbeddingModelConfiguration:
              dimensions: 1024
              embeddingDataType: FLOAT32
          supplementalDataStorageConfiguration:
            storageLocations:
              - type: S3
                s3Location:
                  uri: s3://my-bucket/chunk-processor/
        type: VECTOR
      storageConfiguration:
        type: OPENSEARCH_SERVERLESS
        opensearchServerlessConfiguration:
          collectionArn: arn:aws:aoss:us-west-2:123456789012:collection/142bezjddq707i5stcrf
          vectorIndexName: bedrock-knowledge-base-default-index
          fieldMapping:
            vectorField: bedrock-knowledge-base-default-vector
            textField: AMAZON_BEDROCK_TEXT_CHUNK
            metadataField: AMAZON_BEDROCK_METADATA
Create AgentKnowledgeBase Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new AgentKnowledgeBase(name: string, args: AgentKnowledgeBaseArgs, opts?: CustomResourceOptions);@overload
def AgentKnowledgeBase(resource_name: str,
                       args: AgentKnowledgeBaseArgs,
                       opts: Optional[ResourceOptions] = None)
@overload
def AgentKnowledgeBase(resource_name: str,
                       opts: Optional[ResourceOptions] = None,
                       role_arn: Optional[str] = None,
                       description: Optional[str] = None,
                       knowledge_base_configuration: Optional[AgentKnowledgeBaseKnowledgeBaseConfigurationArgs] = None,
                       name: Optional[str] = None,
                       storage_configuration: Optional[AgentKnowledgeBaseStorageConfigurationArgs] = None,
                       tags: Optional[Mapping[str, str]] = None,
                       timeouts: Optional[AgentKnowledgeBaseTimeoutsArgs] = None)func NewAgentKnowledgeBase(ctx *Context, name string, args AgentKnowledgeBaseArgs, opts ...ResourceOption) (*AgentKnowledgeBase, error)public AgentKnowledgeBase(string name, AgentKnowledgeBaseArgs args, CustomResourceOptions? opts = null)
public AgentKnowledgeBase(String name, AgentKnowledgeBaseArgs args)
public AgentKnowledgeBase(String name, AgentKnowledgeBaseArgs args, CustomResourceOptions options)
type: aws:bedrock:AgentKnowledgeBase
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args AgentKnowledgeBaseArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args AgentKnowledgeBaseArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args AgentKnowledgeBaseArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args AgentKnowledgeBaseArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args AgentKnowledgeBaseArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var agentKnowledgeBaseResource = new Aws.Bedrock.AgentKnowledgeBase("agentKnowledgeBaseResource", new()
{
    RoleArn = "string",
    Description = "string",
    KnowledgeBaseConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationArgs
    {
        Type = "string",
        VectorKnowledgeBaseConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationArgs
        {
            EmbeddingModelArn = "string",
            EmbeddingModelConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationArgs
            {
                BedrockEmbeddingModelConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationBedrockEmbeddingModelConfigurationArgs
                {
                    Dimensions = 0,
                    EmbeddingDataType = "string",
                },
            },
            SupplementalDataStorageConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationArgs
            {
                StorageLocations = new[]
                {
                    new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationArgs
                    {
                        Type = "string",
                        S3Location = new Aws.Bedrock.Inputs.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationS3LocationArgs
                        {
                            Uri = "string",
                        },
                    },
                },
            },
        },
    },
    Name = "string",
    StorageConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseStorageConfigurationArgs
    {
        Type = "string",
        OpensearchServerlessConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationArgs
        {
            CollectionArn = "string",
            VectorIndexName = "string",
            FieldMapping = new Aws.Bedrock.Inputs.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationFieldMappingArgs
            {
                MetadataField = "string",
                TextField = "string",
                VectorField = "string",
            },
        },
        PineconeConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseStorageConfigurationPineconeConfigurationArgs
        {
            ConnectionString = "string",
            CredentialsSecretArn = "string",
            FieldMapping = new Aws.Bedrock.Inputs.AgentKnowledgeBaseStorageConfigurationPineconeConfigurationFieldMappingArgs
            {
                MetadataField = "string",
                TextField = "string",
            },
            Namespace = "string",
        },
        RdsConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseStorageConfigurationRdsConfigurationArgs
        {
            CredentialsSecretArn = "string",
            DatabaseName = "string",
            ResourceArn = "string",
            TableName = "string",
            FieldMapping = new Aws.Bedrock.Inputs.AgentKnowledgeBaseStorageConfigurationRdsConfigurationFieldMappingArgs
            {
                MetadataField = "string",
                PrimaryKeyField = "string",
                TextField = "string",
                VectorField = "string",
            },
        },
        RedisEnterpriseCloudConfiguration = new Aws.Bedrock.Inputs.AgentKnowledgeBaseStorageConfigurationRedisEnterpriseCloudConfigurationArgs
        {
            CredentialsSecretArn = "string",
            Endpoint = "string",
            VectorIndexName = "string",
            FieldMapping = new Aws.Bedrock.Inputs.AgentKnowledgeBaseStorageConfigurationRedisEnterpriseCloudConfigurationFieldMappingArgs
            {
                MetadataField = "string",
                TextField = "string",
                VectorField = "string",
            },
        },
    },
    Tags = 
    {
        { "string", "string" },
    },
    Timeouts = new Aws.Bedrock.Inputs.AgentKnowledgeBaseTimeoutsArgs
    {
        Create = "string",
        Delete = "string",
        Update = "string",
    },
});
example, err := bedrock.NewAgentKnowledgeBase(ctx, "agentKnowledgeBaseResource", &bedrock.AgentKnowledgeBaseArgs{
	RoleArn:     pulumi.String("string"),
	Description: pulumi.String("string"),
	KnowledgeBaseConfiguration: &bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationArgs{
		Type: pulumi.String("string"),
		VectorKnowledgeBaseConfiguration: &bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationArgs{
			EmbeddingModelArn: pulumi.String("string"),
			EmbeddingModelConfiguration: &bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationArgs{
				BedrockEmbeddingModelConfiguration: &bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationBedrockEmbeddingModelConfigurationArgs{
					Dimensions:        pulumi.Int(0),
					EmbeddingDataType: pulumi.String("string"),
				},
			},
			SupplementalDataStorageConfiguration: &bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationArgs{
				StorageLocations: bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationArray{
					&bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationArgs{
						Type: pulumi.String("string"),
						S3Location: &bedrock.AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationS3LocationArgs{
							Uri: pulumi.String("string"),
						},
					},
				},
			},
		},
	},
	Name: pulumi.String("string"),
	StorageConfiguration: &bedrock.AgentKnowledgeBaseStorageConfigurationArgs{
		Type: pulumi.String("string"),
		OpensearchServerlessConfiguration: &bedrock.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationArgs{
			CollectionArn:   pulumi.String("string"),
			VectorIndexName: pulumi.String("string"),
			FieldMapping: &bedrock.AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationFieldMappingArgs{
				MetadataField: pulumi.String("string"),
				TextField:     pulumi.String("string"),
				VectorField:   pulumi.String("string"),
			},
		},
		PineconeConfiguration: &bedrock.AgentKnowledgeBaseStorageConfigurationPineconeConfigurationArgs{
			ConnectionString:     pulumi.String("string"),
			CredentialsSecretArn: pulumi.String("string"),
			FieldMapping: &bedrock.AgentKnowledgeBaseStorageConfigurationPineconeConfigurationFieldMappingArgs{
				MetadataField: pulumi.String("string"),
				TextField:     pulumi.String("string"),
			},
			Namespace: pulumi.String("string"),
		},
		RdsConfiguration: &bedrock.AgentKnowledgeBaseStorageConfigurationRdsConfigurationArgs{
			CredentialsSecretArn: pulumi.String("string"),
			DatabaseName:         pulumi.String("string"),
			ResourceArn:          pulumi.String("string"),
			TableName:            pulumi.String("string"),
			FieldMapping: &bedrock.AgentKnowledgeBaseStorageConfigurationRdsConfigurationFieldMappingArgs{
				MetadataField:   pulumi.String("string"),
				PrimaryKeyField: pulumi.String("string"),
				TextField:       pulumi.String("string"),
				VectorField:     pulumi.String("string"),
			},
		},
		RedisEnterpriseCloudConfiguration: &bedrock.AgentKnowledgeBaseStorageConfigurationRedisEnterpriseCloudConfigurationArgs{
			CredentialsSecretArn: pulumi.String("string"),
			Endpoint:             pulumi.String("string"),
			VectorIndexName:      pulumi.String("string"),
			FieldMapping: &bedrock.AgentKnowledgeBaseStorageConfigurationRedisEnterpriseCloudConfigurationFieldMappingArgs{
				MetadataField: pulumi.String("string"),
				TextField:     pulumi.String("string"),
				VectorField:   pulumi.String("string"),
			},
		},
	},
	Tags: pulumi.StringMap{
		"string": pulumi.String("string"),
	},
	Timeouts: &bedrock.AgentKnowledgeBaseTimeoutsArgs{
		Create: pulumi.String("string"),
		Delete: pulumi.String("string"),
		Update: pulumi.String("string"),
	},
})
var agentKnowledgeBaseResource = new AgentKnowledgeBase("agentKnowledgeBaseResource", AgentKnowledgeBaseArgs.builder()
    .roleArn("string")
    .description("string")
    .knowledgeBaseConfiguration(AgentKnowledgeBaseKnowledgeBaseConfigurationArgs.builder()
        .type("string")
        .vectorKnowledgeBaseConfiguration(AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationArgs.builder()
            .embeddingModelArn("string")
            .embeddingModelConfiguration(AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationArgs.builder()
                .bedrockEmbeddingModelConfiguration(AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationBedrockEmbeddingModelConfigurationArgs.builder()
                    .dimensions(0)
                    .embeddingDataType("string")
                    .build())
                .build())
            .supplementalDataStorageConfiguration(AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationArgs.builder()
                .storageLocations(AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationArgs.builder()
                    .type("string")
                    .s3Location(AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationS3LocationArgs.builder()
                        .uri("string")
                        .build())
                    .build())
                .build())
            .build())
        .build())
    .name("string")
    .storageConfiguration(AgentKnowledgeBaseStorageConfigurationArgs.builder()
        .type("string")
        .opensearchServerlessConfiguration(AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationArgs.builder()
            .collectionArn("string")
            .vectorIndexName("string")
            .fieldMapping(AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationFieldMappingArgs.builder()
                .metadataField("string")
                .textField("string")
                .vectorField("string")
                .build())
            .build())
        .pineconeConfiguration(AgentKnowledgeBaseStorageConfigurationPineconeConfigurationArgs.builder()
            .connectionString("string")
            .credentialsSecretArn("string")
            .fieldMapping(AgentKnowledgeBaseStorageConfigurationPineconeConfigurationFieldMappingArgs.builder()
                .metadataField("string")
                .textField("string")
                .build())
            .namespace("string")
            .build())
        .rdsConfiguration(AgentKnowledgeBaseStorageConfigurationRdsConfigurationArgs.builder()
            .credentialsSecretArn("string")
            .databaseName("string")
            .resourceArn("string")
            .tableName("string")
            .fieldMapping(AgentKnowledgeBaseStorageConfigurationRdsConfigurationFieldMappingArgs.builder()
                .metadataField("string")
                .primaryKeyField("string")
                .textField("string")
                .vectorField("string")
                .build())
            .build())
        .redisEnterpriseCloudConfiguration(AgentKnowledgeBaseStorageConfigurationRedisEnterpriseCloudConfigurationArgs.builder()
            .credentialsSecretArn("string")
            .endpoint("string")
            .vectorIndexName("string")
            .fieldMapping(AgentKnowledgeBaseStorageConfigurationRedisEnterpriseCloudConfigurationFieldMappingArgs.builder()
                .metadataField("string")
                .textField("string")
                .vectorField("string")
                .build())
            .build())
        .build())
    .tags(Map.of("string", "string"))
    .timeouts(AgentKnowledgeBaseTimeoutsArgs.builder()
        .create("string")
        .delete("string")
        .update("string")
        .build())
    .build());
agent_knowledge_base_resource = aws.bedrock.AgentKnowledgeBase("agentKnowledgeBaseResource",
    role_arn="string",
    description="string",
    knowledge_base_configuration={
        "type": "string",
        "vector_knowledge_base_configuration": {
            "embedding_model_arn": "string",
            "embedding_model_configuration": {
                "bedrock_embedding_model_configuration": {
                    "dimensions": 0,
                    "embedding_data_type": "string",
                },
            },
            "supplemental_data_storage_configuration": {
                "storage_locations": [{
                    "type": "string",
                    "s3_location": {
                        "uri": "string",
                    },
                }],
            },
        },
    },
    name="string",
    storage_configuration={
        "type": "string",
        "opensearch_serverless_configuration": {
            "collection_arn": "string",
            "vector_index_name": "string",
            "field_mapping": {
                "metadata_field": "string",
                "text_field": "string",
                "vector_field": "string",
            },
        },
        "pinecone_configuration": {
            "connection_string": "string",
            "credentials_secret_arn": "string",
            "field_mapping": {
                "metadata_field": "string",
                "text_field": "string",
            },
            "namespace": "string",
        },
        "rds_configuration": {
            "credentials_secret_arn": "string",
            "database_name": "string",
            "resource_arn": "string",
            "table_name": "string",
            "field_mapping": {
                "metadata_field": "string",
                "primary_key_field": "string",
                "text_field": "string",
                "vector_field": "string",
            },
        },
        "redis_enterprise_cloud_configuration": {
            "credentials_secret_arn": "string",
            "endpoint": "string",
            "vector_index_name": "string",
            "field_mapping": {
                "metadata_field": "string",
                "text_field": "string",
                "vector_field": "string",
            },
        },
    },
    tags={
        "string": "string",
    },
    timeouts={
        "create": "string",
        "delete": "string",
        "update": "string",
    })
const agentKnowledgeBaseResource = new aws.bedrock.AgentKnowledgeBase("agentKnowledgeBaseResource", {
    roleArn: "string",
    description: "string",
    knowledgeBaseConfiguration: {
        type: "string",
        vectorKnowledgeBaseConfiguration: {
            embeddingModelArn: "string",
            embeddingModelConfiguration: {
                bedrockEmbeddingModelConfiguration: {
                    dimensions: 0,
                    embeddingDataType: "string",
                },
            },
            supplementalDataStorageConfiguration: {
                storageLocations: [{
                    type: "string",
                    s3Location: {
                        uri: "string",
                    },
                }],
            },
        },
    },
    name: "string",
    storageConfiguration: {
        type: "string",
        opensearchServerlessConfiguration: {
            collectionArn: "string",
            vectorIndexName: "string",
            fieldMapping: {
                metadataField: "string",
                textField: "string",
                vectorField: "string",
            },
        },
        pineconeConfiguration: {
            connectionString: "string",
            credentialsSecretArn: "string",
            fieldMapping: {
                metadataField: "string",
                textField: "string",
            },
            namespace: "string",
        },
        rdsConfiguration: {
            credentialsSecretArn: "string",
            databaseName: "string",
            resourceArn: "string",
            tableName: "string",
            fieldMapping: {
                metadataField: "string",
                primaryKeyField: "string",
                textField: "string",
                vectorField: "string",
            },
        },
        redisEnterpriseCloudConfiguration: {
            credentialsSecretArn: "string",
            endpoint: "string",
            vectorIndexName: "string",
            fieldMapping: {
                metadataField: "string",
                textField: "string",
                vectorField: "string",
            },
        },
    },
    tags: {
        string: "string",
    },
    timeouts: {
        create: "string",
        "delete": "string",
        update: "string",
    },
});
type: aws:bedrock:AgentKnowledgeBase
properties:
    description: string
    knowledgeBaseConfiguration:
        type: string
        vectorKnowledgeBaseConfiguration:
            embeddingModelArn: string
            embeddingModelConfiguration:
                bedrockEmbeddingModelConfiguration:
                    dimensions: 0
                    embeddingDataType: string
            supplementalDataStorageConfiguration:
                storageLocations:
                    - s3Location:
                        uri: string
                      type: string
    name: string
    roleArn: string
    storageConfiguration:
        opensearchServerlessConfiguration:
            collectionArn: string
            fieldMapping:
                metadataField: string
                textField: string
                vectorField: string
            vectorIndexName: string
        pineconeConfiguration:
            connectionString: string
            credentialsSecretArn: string
            fieldMapping:
                metadataField: string
                textField: string
            namespace: string
        rdsConfiguration:
            credentialsSecretArn: string
            databaseName: string
            fieldMapping:
                metadataField: string
                primaryKeyField: string
                textField: string
                vectorField: string
            resourceArn: string
            tableName: string
        redisEnterpriseCloudConfiguration:
            credentialsSecretArn: string
            endpoint: string
            fieldMapping:
                metadataField: string
                textField: string
                vectorField: string
            vectorIndexName: string
        type: string
    tags:
        string: string
    timeouts:
        create: string
        delete: string
        update: string
AgentKnowledgeBase Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The AgentKnowledgeBase resource accepts the following input properties:
- RoleArn string
- ARN of the IAM role with permissions to invoke API operations on the knowledge base.
- Description string
- Description of the knowledge base.
- KnowledgeBase AgentConfiguration Knowledge Base Knowledge Base Configuration 
- Details about the embeddings configuration of the knowledge base. See knowledge_base_configurationblock for details.
- Name string
- Name of the knowledge base.
- StorageConfiguration AgentKnowledge Base Storage Configuration 
- Details about the storage configuration of the knowledge base. See - storage_configurationblock for details.- The following arguments are optional: 
- Dictionary<string, string>
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Timeouts
AgentKnowledge Base Timeouts 
- RoleArn string
- ARN of the IAM role with permissions to invoke API operations on the knowledge base.
- Description string
- Description of the knowledge base.
- KnowledgeBase AgentConfiguration Knowledge Base Knowledge Base Configuration Args 
- Details about the embeddings configuration of the knowledge base. See knowledge_base_configurationblock for details.
- Name string
- Name of the knowledge base.
- StorageConfiguration AgentKnowledge Base Storage Configuration Args 
- Details about the storage configuration of the knowledge base. See - storage_configurationblock for details.- The following arguments are optional: 
- map[string]string
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Timeouts
AgentKnowledge Base Timeouts Args 
- roleArn String
- ARN of the IAM role with permissions to invoke API operations on the knowledge base.
- description String
- Description of the knowledge base.
- knowledgeBase AgentConfiguration Knowledge Base Knowledge Base Configuration 
- Details about the embeddings configuration of the knowledge base. See knowledge_base_configurationblock for details.
- name String
- Name of the knowledge base.
- storageConfiguration AgentKnowledge Base Storage Configuration 
- Details about the storage configuration of the knowledge base. See - storage_configurationblock for details.- The following arguments are optional: 
- Map<String,String>
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- timeouts
AgentKnowledge Base Timeouts 
- roleArn string
- ARN of the IAM role with permissions to invoke API operations on the knowledge base.
- description string
- Description of the knowledge base.
- knowledgeBase AgentConfiguration Knowledge Base Knowledge Base Configuration 
- Details about the embeddings configuration of the knowledge base. See knowledge_base_configurationblock for details.
- name string
- Name of the knowledge base.
- storageConfiguration AgentKnowledge Base Storage Configuration 
- Details about the storage configuration of the knowledge base. See - storage_configurationblock for details.- The following arguments are optional: 
- {[key: string]: string}
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- timeouts
AgentKnowledge Base Timeouts 
- role_arn str
- ARN of the IAM role with permissions to invoke API operations on the knowledge base.
- description str
- Description of the knowledge base.
- knowledge_base_ Agentconfiguration Knowledge Base Knowledge Base Configuration Args 
- Details about the embeddings configuration of the knowledge base. See knowledge_base_configurationblock for details.
- name str
- Name of the knowledge base.
- storage_configuration AgentKnowledge Base Storage Configuration Args 
- Details about the storage configuration of the knowledge base. See - storage_configurationblock for details.- The following arguments are optional: 
- Mapping[str, str]
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- timeouts
AgentKnowledge Base Timeouts Args 
- roleArn String
- ARN of the IAM role with permissions to invoke API operations on the knowledge base.
- description String
- Description of the knowledge base.
- knowledgeBase Property MapConfiguration 
- Details about the embeddings configuration of the knowledge base. See knowledge_base_configurationblock for details.
- name String
- Name of the knowledge base.
- storageConfiguration Property Map
- Details about the storage configuration of the knowledge base. See - storage_configurationblock for details.- The following arguments are optional: 
- Map<String>
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- timeouts Property Map
Outputs
All input properties are implicitly available as output properties. Additionally, the AgentKnowledgeBase resource produces the following output properties:
- Arn string
- ARN of the knowledge base.
- CreatedAt string
- Time at which the knowledge base was created.
- FailureReasons List<string>
- Id string
- The provider-assigned unique ID for this managed resource.
- Dictionary<string, string>
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- UpdatedAt string
- Time at which the knowledge base was last updated.
- Arn string
- ARN of the knowledge base.
- CreatedAt string
- Time at which the knowledge base was created.
- FailureReasons []string
- Id string
- The provider-assigned unique ID for this managed resource.
- map[string]string
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- UpdatedAt string
- Time at which the knowledge base was last updated.
- arn String
- ARN of the knowledge base.
- createdAt String
- Time at which the knowledge base was created.
- failureReasons List<String>
- id String
- The provider-assigned unique ID for this managed resource.
- Map<String,String>
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- updatedAt String
- Time at which the knowledge base was last updated.
- arn string
- ARN of the knowledge base.
- createdAt string
- Time at which the knowledge base was created.
- failureReasons string[]
- id string
- The provider-assigned unique ID for this managed resource.
- {[key: string]: string}
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- updatedAt string
- Time at which the knowledge base was last updated.
- arn str
- ARN of the knowledge base.
- created_at str
- Time at which the knowledge base was created.
- failure_reasons Sequence[str]
- id str
- The provider-assigned unique ID for this managed resource.
- Mapping[str, str]
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- updated_at str
- Time at which the knowledge base was last updated.
- arn String
- ARN of the knowledge base.
- createdAt String
- Time at which the knowledge base was created.
- failureReasons List<String>
- id String
- The provider-assigned unique ID for this managed resource.
- Map<String>
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- updatedAt String
- Time at which the knowledge base was last updated.
Look up Existing AgentKnowledgeBase Resource
Get an existing AgentKnowledgeBase resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: AgentKnowledgeBaseState, opts?: CustomResourceOptions): AgentKnowledgeBase@staticmethod
def get(resource_name: str,
        id: str,
        opts: Optional[ResourceOptions] = None,
        arn: Optional[str] = None,
        created_at: Optional[str] = None,
        description: Optional[str] = None,
        failure_reasons: Optional[Sequence[str]] = None,
        knowledge_base_configuration: Optional[AgentKnowledgeBaseKnowledgeBaseConfigurationArgs] = None,
        name: Optional[str] = None,
        role_arn: Optional[str] = None,
        storage_configuration: Optional[AgentKnowledgeBaseStorageConfigurationArgs] = None,
        tags: Optional[Mapping[str, str]] = None,
        tags_all: Optional[Mapping[str, str]] = None,
        timeouts: Optional[AgentKnowledgeBaseTimeoutsArgs] = None,
        updated_at: Optional[str] = None) -> AgentKnowledgeBasefunc GetAgentKnowledgeBase(ctx *Context, name string, id IDInput, state *AgentKnowledgeBaseState, opts ...ResourceOption) (*AgentKnowledgeBase, error)public static AgentKnowledgeBase Get(string name, Input<string> id, AgentKnowledgeBaseState? state, CustomResourceOptions? opts = null)public static AgentKnowledgeBase get(String name, Output<String> id, AgentKnowledgeBaseState state, CustomResourceOptions options)resources:  _:    type: aws:bedrock:AgentKnowledgeBase    get:      id: ${id}- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Arn string
- ARN of the knowledge base.
- CreatedAt string
- Time at which the knowledge base was created.
- Description string
- Description of the knowledge base.
- FailureReasons List<string>
- KnowledgeBase AgentConfiguration Knowledge Base Knowledge Base Configuration 
- Details about the embeddings configuration of the knowledge base. See knowledge_base_configurationblock for details.
- Name string
- Name of the knowledge base.
- RoleArn string
- ARN of the IAM role with permissions to invoke API operations on the knowledge base.
- StorageConfiguration AgentKnowledge Base Storage Configuration 
- Details about the storage configuration of the knowledge base. See - storage_configurationblock for details.- The following arguments are optional: 
- Dictionary<string, string>
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Dictionary<string, string>
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- Timeouts
AgentKnowledge Base Timeouts 
- UpdatedAt string
- Time at which the knowledge base was last updated.
- Arn string
- ARN of the knowledge base.
- CreatedAt string
- Time at which the knowledge base was created.
- Description string
- Description of the knowledge base.
- FailureReasons []string
- KnowledgeBase AgentConfiguration Knowledge Base Knowledge Base Configuration Args 
- Details about the embeddings configuration of the knowledge base. See knowledge_base_configurationblock for details.
- Name string
- Name of the knowledge base.
- RoleArn string
- ARN of the IAM role with permissions to invoke API operations on the knowledge base.
- StorageConfiguration AgentKnowledge Base Storage Configuration Args 
- Details about the storage configuration of the knowledge base. See - storage_configurationblock for details.- The following arguments are optional: 
- map[string]string
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- map[string]string
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- Timeouts
AgentKnowledge Base Timeouts Args 
- UpdatedAt string
- Time at which the knowledge base was last updated.
- arn String
- ARN of the knowledge base.
- createdAt String
- Time at which the knowledge base was created.
- description String
- Description of the knowledge base.
- failureReasons List<String>
- knowledgeBase AgentConfiguration Knowledge Base Knowledge Base Configuration 
- Details about the embeddings configuration of the knowledge base. See knowledge_base_configurationblock for details.
- name String
- Name of the knowledge base.
- roleArn String
- ARN of the IAM role with permissions to invoke API operations on the knowledge base.
- storageConfiguration AgentKnowledge Base Storage Configuration 
- Details about the storage configuration of the knowledge base. See - storage_configurationblock for details.- The following arguments are optional: 
- Map<String,String>
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Map<String,String>
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- timeouts
AgentKnowledge Base Timeouts 
- updatedAt String
- Time at which the knowledge base was last updated.
- arn string
- ARN of the knowledge base.
- createdAt string
- Time at which the knowledge base was created.
- description string
- Description of the knowledge base.
- failureReasons string[]
- knowledgeBase AgentConfiguration Knowledge Base Knowledge Base Configuration 
- Details about the embeddings configuration of the knowledge base. See knowledge_base_configurationblock for details.
- name string
- Name of the knowledge base.
- roleArn string
- ARN of the IAM role with permissions to invoke API operations on the knowledge base.
- storageConfiguration AgentKnowledge Base Storage Configuration 
- Details about the storage configuration of the knowledge base. See - storage_configurationblock for details.- The following arguments are optional: 
- {[key: string]: string}
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- {[key: string]: string}
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- timeouts
AgentKnowledge Base Timeouts 
- updatedAt string
- Time at which the knowledge base was last updated.
- arn str
- ARN of the knowledge base.
- created_at str
- Time at which the knowledge base was created.
- description str
- Description of the knowledge base.
- failure_reasons Sequence[str]
- knowledge_base_ Agentconfiguration Knowledge Base Knowledge Base Configuration Args 
- Details about the embeddings configuration of the knowledge base. See knowledge_base_configurationblock for details.
- name str
- Name of the knowledge base.
- role_arn str
- ARN of the IAM role with permissions to invoke API operations on the knowledge base.
- storage_configuration AgentKnowledge Base Storage Configuration Args 
- Details about the storage configuration of the knowledge base. See - storage_configurationblock for details.- The following arguments are optional: 
- Mapping[str, str]
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Mapping[str, str]
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- timeouts
AgentKnowledge Base Timeouts Args 
- updated_at str
- Time at which the knowledge base was last updated.
- arn String
- ARN of the knowledge base.
- createdAt String
- Time at which the knowledge base was created.
- description String
- Description of the knowledge base.
- failureReasons List<String>
- knowledgeBase Property MapConfiguration 
- Details about the embeddings configuration of the knowledge base. See knowledge_base_configurationblock for details.
- name String
- Name of the knowledge base.
- roleArn String
- ARN of the IAM role with permissions to invoke API operations on the knowledge base.
- storageConfiguration Property Map
- Details about the storage configuration of the knowledge base. See - storage_configurationblock for details.- The following arguments are optional: 
- Map<String>
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Map<String>
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- timeouts Property Map
- updatedAt String
- Time at which the knowledge base was last updated.
Supporting Types
AgentKnowledgeBaseKnowledgeBaseConfiguration, AgentKnowledgeBaseKnowledgeBaseConfigurationArgs            
- Type string
- Type of data that the data source is converted into for the knowledge base. Valid Values: VECTOR.
- VectorKnowledge AgentBase Configuration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration 
- Details about the embeddings model that'sused to convert the data source. See vector_knowledge_base_configurationblock for details.
- Type string
- Type of data that the data source is converted into for the knowledge base. Valid Values: VECTOR.
- VectorKnowledge AgentBase Configuration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration 
- Details about the embeddings model that'sused to convert the data source. See vector_knowledge_base_configurationblock for details.
- type String
- Type of data that the data source is converted into for the knowledge base. Valid Values: VECTOR.
- vectorKnowledge AgentBase Configuration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration 
- Details about the embeddings model that'sused to convert the data source. See vector_knowledge_base_configurationblock for details.
- type string
- Type of data that the data source is converted into for the knowledge base. Valid Values: VECTOR.
- vectorKnowledge AgentBase Configuration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration 
- Details about the embeddings model that'sused to convert the data source. See vector_knowledge_base_configurationblock for details.
- type str
- Type of data that the data source is converted into for the knowledge base. Valid Values: VECTOR.
- vector_knowledge_ Agentbase_ configuration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration 
- Details about the embeddings model that'sused to convert the data source. See vector_knowledge_base_configurationblock for details.
- type String
- Type of data that the data source is converted into for the knowledge base. Valid Values: VECTOR.
- vectorKnowledge Property MapBase Configuration 
- Details about the embeddings model that'sused to convert the data source. See vector_knowledge_base_configurationblock for details.
AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfiguration, AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationArgs                    
- EmbeddingModel stringArn 
- ARN of the model used to create vector embeddings for the knowledge base.
- EmbeddingModel AgentConfiguration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Embedding Model Configuration 
- The embeddings model configuration details for the vector model used in Knowledge Base. See embedding_model_configurationblock for details.
- SupplementalData AgentStorage Configuration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Supplemental Data Storage Configuration 
- supplemental_data_storage_configuration. See supplemental_data_storage_configurationblock for details.
- EmbeddingModel stringArn 
- ARN of the model used to create vector embeddings for the knowledge base.
- EmbeddingModel AgentConfiguration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Embedding Model Configuration 
- The embeddings model configuration details for the vector model used in Knowledge Base. See embedding_model_configurationblock for details.
- SupplementalData AgentStorage Configuration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Supplemental Data Storage Configuration 
- supplemental_data_storage_configuration. See supplemental_data_storage_configurationblock for details.
- embeddingModel StringArn 
- ARN of the model used to create vector embeddings for the knowledge base.
- embeddingModel AgentConfiguration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Embedding Model Configuration 
- The embeddings model configuration details for the vector model used in Knowledge Base. See embedding_model_configurationblock for details.
- supplementalData AgentStorage Configuration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Supplemental Data Storage Configuration 
- supplemental_data_storage_configuration. See supplemental_data_storage_configurationblock for details.
- embeddingModel stringArn 
- ARN of the model used to create vector embeddings for the knowledge base.
- embeddingModel AgentConfiguration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Embedding Model Configuration 
- The embeddings model configuration details for the vector model used in Knowledge Base. See embedding_model_configurationblock for details.
- supplementalData AgentStorage Configuration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Supplemental Data Storage Configuration 
- supplemental_data_storage_configuration. See supplemental_data_storage_configurationblock for details.
- embedding_model_ strarn 
- ARN of the model used to create vector embeddings for the knowledge base.
- embedding_model_ Agentconfiguration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Embedding Model Configuration 
- The embeddings model configuration details for the vector model used in Knowledge Base. See embedding_model_configurationblock for details.
- supplemental_data_ Agentstorage_ configuration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Supplemental Data Storage Configuration 
- supplemental_data_storage_configuration. See supplemental_data_storage_configurationblock for details.
- embeddingModel StringArn 
- ARN of the model used to create vector embeddings for the knowledge base.
- embeddingModel Property MapConfiguration 
- The embeddings model configuration details for the vector model used in Knowledge Base. See embedding_model_configurationblock for details.
- supplementalData Property MapStorage Configuration 
- supplemental_data_storage_configuration. See supplemental_data_storage_configurationblock for details.
AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfiguration, AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationArgs                          
- BedrockEmbedding AgentModel Configuration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Embedding Model Configuration Bedrock Embedding Model Configuration 
- The vector configuration details on the Bedrock embeddings model. See bedrock_embedding_model_configurationblock for details.
- BedrockEmbedding AgentModel Configuration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Embedding Model Configuration Bedrock Embedding Model Configuration 
- The vector configuration details on the Bedrock embeddings model. See bedrock_embedding_model_configurationblock for details.
- bedrockEmbedding AgentModel Configuration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Embedding Model Configuration Bedrock Embedding Model Configuration 
- The vector configuration details on the Bedrock embeddings model. See bedrock_embedding_model_configurationblock for details.
- bedrockEmbedding AgentModel Configuration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Embedding Model Configuration Bedrock Embedding Model Configuration 
- The vector configuration details on the Bedrock embeddings model. See bedrock_embedding_model_configurationblock for details.
- bedrock_embedding_ Agentmodel_ configuration Knowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Embedding Model Configuration Bedrock Embedding Model Configuration 
- The vector configuration details on the Bedrock embeddings model. See bedrock_embedding_model_configurationblock for details.
- bedrockEmbedding Property MapModel Configuration 
- The vector configuration details on the Bedrock embeddings model. See bedrock_embedding_model_configurationblock for details.
AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationBedrockEmbeddingModelConfiguration, AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationEmbeddingModelConfigurationBedrockEmbeddingModelConfigurationArgs                                  
- Dimensions int
- Dimension details for the vector configuration used on the Bedrock embeddings model.
- EmbeddingData stringType 
- Data type for the vectors when using a model to convert text into vector embeddings. The model must support the specified data type for vector embeddings. Valid values are FLOAT32andBINARY.
- Dimensions int
- Dimension details for the vector configuration used on the Bedrock embeddings model.
- EmbeddingData stringType 
- Data type for the vectors when using a model to convert text into vector embeddings. The model must support the specified data type for vector embeddings. Valid values are FLOAT32andBINARY.
- dimensions Integer
- Dimension details for the vector configuration used on the Bedrock embeddings model.
- embeddingData StringType 
- Data type for the vectors when using a model to convert text into vector embeddings. The model must support the specified data type for vector embeddings. Valid values are FLOAT32andBINARY.
- dimensions number
- Dimension details for the vector configuration used on the Bedrock embeddings model.
- embeddingData stringType 
- Data type for the vectors when using a model to convert text into vector embeddings. The model must support the specified data type for vector embeddings. Valid values are FLOAT32andBINARY.
- dimensions int
- Dimension details for the vector configuration used on the Bedrock embeddings model.
- embedding_data_ strtype 
- Data type for the vectors when using a model to convert text into vector embeddings. The model must support the specified data type for vector embeddings. Valid values are FLOAT32andBINARY.
- dimensions Number
- Dimension details for the vector configuration used on the Bedrock embeddings model.
- embeddingData StringType 
- Data type for the vectors when using a model to convert text into vector embeddings. The model must support the specified data type for vector embeddings. Valid values are FLOAT32andBINARY.
AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfiguration, AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationArgs                            
- StorageLocations List<AgentKnowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Supplemental Data Storage Configuration Storage Location> 
- A storage location specification for images extracted from multimodal documents in your data source. See storage_locationblock for details.
- StorageLocations []AgentKnowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Supplemental Data Storage Configuration Storage Location 
- A storage location specification for images extracted from multimodal documents in your data source. See storage_locationblock for details.
- storageLocations List<AgentKnowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Supplemental Data Storage Configuration Storage Location> 
- A storage location specification for images extracted from multimodal documents in your data source. See storage_locationblock for details.
- storageLocations AgentKnowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Supplemental Data Storage Configuration Storage Location[] 
- A storage location specification for images extracted from multimodal documents in your data source. See storage_locationblock for details.
- storage_locations Sequence[AgentKnowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Supplemental Data Storage Configuration Storage Location] 
- A storage location specification for images extracted from multimodal documents in your data source. See storage_locationblock for details.
- storageLocations List<Property Map>
- A storage location specification for images extracted from multimodal documents in your data source. See storage_locationblock for details.
AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocation, AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationArgs                                
- Type string
- Storage service used for this location. S3is the only valid value.
- S3Location
AgentKnowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Supplemental Data Storage Configuration Storage Location S3Location 
- Contains information about the Amazon S3 location for the extracted images. See s3_locationblock for details.
- Type string
- Storage service used for this location. S3is the only valid value.
- S3Location
AgentKnowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Supplemental Data Storage Configuration Storage Location S3Location 
- Contains information about the Amazon S3 location for the extracted images. See s3_locationblock for details.
- type String
- Storage service used for this location. S3is the only valid value.
- s3Location
AgentKnowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Supplemental Data Storage Configuration Storage Location S3Location 
- Contains information about the Amazon S3 location for the extracted images. See s3_locationblock for details.
- type string
- Storage service used for this location. S3is the only valid value.
- s3Location
AgentKnowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Supplemental Data Storage Configuration Storage Location S3Location 
- Contains information about the Amazon S3 location for the extracted images. See s3_locationblock for details.
- type str
- Storage service used for this location. S3is the only valid value.
- s3_location AgentKnowledge Base Knowledge Base Configuration Vector Knowledge Base Configuration Supplemental Data Storage Configuration Storage Location S3Location 
- Contains information about the Amazon S3 location for the extracted images. See s3_locationblock for details.
- type String
- Storage service used for this location. S3is the only valid value.
- s3Location Property Map
- Contains information about the Amazon S3 location for the extracted images. See s3_locationblock for details.
AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationS3Location, AgentKnowledgeBaseKnowledgeBaseConfigurationVectorKnowledgeBaseConfigurationSupplementalDataStorageConfigurationStorageLocationS3LocationArgs                                  
- Uri string
- URI of the location.
- Uri string
- URI of the location.
- uri String
- URI of the location.
- uri string
- URI of the location.
- uri str
- URI of the location.
- uri String
- URI of the location.
AgentKnowledgeBaseStorageConfiguration, AgentKnowledgeBaseStorageConfigurationArgs          
- Type string
- Vector store service in which the knowledge base is stored. Valid Values: OPENSEARCH_SERVERLESS,PINECONE,REDIS_ENTERPRISE_CLOUD,RDS.
- OpensearchServerless AgentConfiguration Knowledge Base Storage Configuration Opensearch Serverless Configuration 
- The storage configuration of the knowledge base in Amazon OpenSearch Service. See opensearch_serverless_configurationblock for details.
- PineconeConfiguration AgentKnowledge Base Storage Configuration Pinecone Configuration 
- The storage configuration of the knowledge base in Pinecone. See pinecone_configurationblock for details.
- RdsConfiguration AgentKnowledge Base Storage Configuration Rds Configuration 
- Details about the storage configuration of the knowledge base in Amazon RDS. For more information, see Create a vector index in Amazon RDS. See rds_configurationblock for details.
- RedisEnterprise AgentCloud Configuration Knowledge Base Storage Configuration Redis Enterprise Cloud Configuration 
- The storage configuration of the knowledge base in Redis Enterprise Cloud. See redis_enterprise_cloud_configurationblock for details.
- Type string
- Vector store service in which the knowledge base is stored. Valid Values: OPENSEARCH_SERVERLESS,PINECONE,REDIS_ENTERPRISE_CLOUD,RDS.
- OpensearchServerless AgentConfiguration Knowledge Base Storage Configuration Opensearch Serverless Configuration 
- The storage configuration of the knowledge base in Amazon OpenSearch Service. See opensearch_serverless_configurationblock for details.
- PineconeConfiguration AgentKnowledge Base Storage Configuration Pinecone Configuration 
- The storage configuration of the knowledge base in Pinecone. See pinecone_configurationblock for details.
- RdsConfiguration AgentKnowledge Base Storage Configuration Rds Configuration 
- Details about the storage configuration of the knowledge base in Amazon RDS. For more information, see Create a vector index in Amazon RDS. See rds_configurationblock for details.
- RedisEnterprise AgentCloud Configuration Knowledge Base Storage Configuration Redis Enterprise Cloud Configuration 
- The storage configuration of the knowledge base in Redis Enterprise Cloud. See redis_enterprise_cloud_configurationblock for details.
- type String
- Vector store service in which the knowledge base is stored. Valid Values: OPENSEARCH_SERVERLESS,PINECONE,REDIS_ENTERPRISE_CLOUD,RDS.
- opensearchServerless AgentConfiguration Knowledge Base Storage Configuration Opensearch Serverless Configuration 
- The storage configuration of the knowledge base in Amazon OpenSearch Service. See opensearch_serverless_configurationblock for details.
- pineconeConfiguration AgentKnowledge Base Storage Configuration Pinecone Configuration 
- The storage configuration of the knowledge base in Pinecone. See pinecone_configurationblock for details.
- rdsConfiguration AgentKnowledge Base Storage Configuration Rds Configuration 
- Details about the storage configuration of the knowledge base in Amazon RDS. For more information, see Create a vector index in Amazon RDS. See rds_configurationblock for details.
- redisEnterprise AgentCloud Configuration Knowledge Base Storage Configuration Redis Enterprise Cloud Configuration 
- The storage configuration of the knowledge base in Redis Enterprise Cloud. See redis_enterprise_cloud_configurationblock for details.
- type string
- Vector store service in which the knowledge base is stored. Valid Values: OPENSEARCH_SERVERLESS,PINECONE,REDIS_ENTERPRISE_CLOUD,RDS.
- opensearchServerless AgentConfiguration Knowledge Base Storage Configuration Opensearch Serverless Configuration 
- The storage configuration of the knowledge base in Amazon OpenSearch Service. See opensearch_serverless_configurationblock for details.
- pineconeConfiguration AgentKnowledge Base Storage Configuration Pinecone Configuration 
- The storage configuration of the knowledge base in Pinecone. See pinecone_configurationblock for details.
- rdsConfiguration AgentKnowledge Base Storage Configuration Rds Configuration 
- Details about the storage configuration of the knowledge base in Amazon RDS. For more information, see Create a vector index in Amazon RDS. See rds_configurationblock for details.
- redisEnterprise AgentCloud Configuration Knowledge Base Storage Configuration Redis Enterprise Cloud Configuration 
- The storage configuration of the knowledge base in Redis Enterprise Cloud. See redis_enterprise_cloud_configurationblock for details.
- type str
- Vector store service in which the knowledge base is stored. Valid Values: OPENSEARCH_SERVERLESS,PINECONE,REDIS_ENTERPRISE_CLOUD,RDS.
- opensearch_serverless_ Agentconfiguration Knowledge Base Storage Configuration Opensearch Serverless Configuration 
- The storage configuration of the knowledge base in Amazon OpenSearch Service. See opensearch_serverless_configurationblock for details.
- pinecone_configuration AgentKnowledge Base Storage Configuration Pinecone Configuration 
- The storage configuration of the knowledge base in Pinecone. See pinecone_configurationblock for details.
- rds_configuration AgentKnowledge Base Storage Configuration Rds Configuration 
- Details about the storage configuration of the knowledge base in Amazon RDS. For more information, see Create a vector index in Amazon RDS. See rds_configurationblock for details.
- redis_enterprise_ Agentcloud_ configuration Knowledge Base Storage Configuration Redis Enterprise Cloud Configuration 
- The storage configuration of the knowledge base in Redis Enterprise Cloud. See redis_enterprise_cloud_configurationblock for details.
- type String
- Vector store service in which the knowledge base is stored. Valid Values: OPENSEARCH_SERVERLESS,PINECONE,REDIS_ENTERPRISE_CLOUD,RDS.
- opensearchServerless Property MapConfiguration 
- The storage configuration of the knowledge base in Amazon OpenSearch Service. See opensearch_serverless_configurationblock for details.
- pineconeConfiguration Property Map
- The storage configuration of the knowledge base in Pinecone. See pinecone_configurationblock for details.
- rdsConfiguration Property Map
- Details about the storage configuration of the knowledge base in Amazon RDS. For more information, see Create a vector index in Amazon RDS. See rds_configurationblock for details.
- redisEnterprise Property MapCloud Configuration 
- The storage configuration of the knowledge base in Redis Enterprise Cloud. See redis_enterprise_cloud_configurationblock for details.
AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfiguration, AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationArgs                
- CollectionArn string
- ARN of the OpenSearch Service vector store.
- VectorIndex stringName 
- Name of the vector store.
- FieldMapping AgentKnowledge Base Storage Configuration Opensearch Serverless Configuration Field Mapping 
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- CollectionArn string
- ARN of the OpenSearch Service vector store.
- VectorIndex stringName 
- Name of the vector store.
- FieldMapping AgentKnowledge Base Storage Configuration Opensearch Serverless Configuration Field Mapping 
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- collectionArn String
- ARN of the OpenSearch Service vector store.
- vectorIndex StringName 
- Name of the vector store.
- fieldMapping AgentKnowledge Base Storage Configuration Opensearch Serverless Configuration Field Mapping 
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- collectionArn string
- ARN of the OpenSearch Service vector store.
- vectorIndex stringName 
- Name of the vector store.
- fieldMapping AgentKnowledge Base Storage Configuration Opensearch Serverless Configuration Field Mapping 
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- collection_arn str
- ARN of the OpenSearch Service vector store.
- vector_index_ strname 
- Name of the vector store.
- field_mapping AgentKnowledge Base Storage Configuration Opensearch Serverless Configuration Field Mapping 
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- collectionArn String
- ARN of the OpenSearch Service vector store.
- vectorIndex StringName 
- Name of the vector store.
- fieldMapping Property Map
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationFieldMapping, AgentKnowledgeBaseStorageConfigurationOpensearchServerlessConfigurationFieldMappingArgs                    
- MetadataField string
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- TextField string
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- VectorField string
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- MetadataField string
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- TextField string
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- VectorField string
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- metadataField String
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- textField String
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- vectorField String
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- metadataField string
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- textField string
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- vectorField string
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- metadata_field str
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- text_field str
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- vector_field str
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- metadataField String
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- textField String
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- vectorField String
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
AgentKnowledgeBaseStorageConfigurationPineconeConfiguration, AgentKnowledgeBaseStorageConfigurationPineconeConfigurationArgs              
- ConnectionString string
- Endpoint URL for your index management page.
- CredentialsSecret stringArn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Pinecone API key.
- FieldMapping AgentKnowledge Base Storage Configuration Pinecone Configuration Field Mapping 
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- Namespace string
- Namespace to be used to write new data to your database.
- ConnectionString string
- Endpoint URL for your index management page.
- CredentialsSecret stringArn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Pinecone API key.
- FieldMapping AgentKnowledge Base Storage Configuration Pinecone Configuration Field Mapping 
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- Namespace string
- Namespace to be used to write new data to your database.
- connectionString String
- Endpoint URL for your index management page.
- credentialsSecret StringArn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Pinecone API key.
- fieldMapping AgentKnowledge Base Storage Configuration Pinecone Configuration Field Mapping 
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- namespace String
- Namespace to be used to write new data to your database.
- connectionString string
- Endpoint URL for your index management page.
- credentialsSecret stringArn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Pinecone API key.
- fieldMapping AgentKnowledge Base Storage Configuration Pinecone Configuration Field Mapping 
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- namespace string
- Namespace to be used to write new data to your database.
- connection_string str
- Endpoint URL for your index management page.
- credentials_secret_ strarn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Pinecone API key.
- field_mapping AgentKnowledge Base Storage Configuration Pinecone Configuration Field Mapping 
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- namespace str
- Namespace to be used to write new data to your database.
- connectionString String
- Endpoint URL for your index management page.
- credentialsSecret StringArn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Pinecone API key.
- fieldMapping Property Map
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- namespace String
- Namespace to be used to write new data to your database.
AgentKnowledgeBaseStorageConfigurationPineconeConfigurationFieldMapping, AgentKnowledgeBaseStorageConfigurationPineconeConfigurationFieldMappingArgs                  
- MetadataField string
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- TextField string
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- MetadataField string
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- TextField string
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- metadataField String
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- textField String
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- metadataField string
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- textField string
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- metadata_field str
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- text_field str
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- metadataField String
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- textField String
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
AgentKnowledgeBaseStorageConfigurationRdsConfiguration, AgentKnowledgeBaseStorageConfigurationRdsConfigurationArgs              
- CredentialsSecret stringArn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Amazon RDS database.
- DatabaseName string
- Name of your Amazon RDS database.
- ResourceArn string
- ARN of the vector store.
- TableName string
- Name of the table in the database.
- FieldMapping AgentKnowledge Base Storage Configuration Rds Configuration Field Mapping 
- Names of the fields to which to map information about the vector store. This block supports the following arguments:
- CredentialsSecret stringArn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Amazon RDS database.
- DatabaseName string
- Name of your Amazon RDS database.
- ResourceArn string
- ARN of the vector store.
- TableName string
- Name of the table in the database.
- FieldMapping AgentKnowledge Base Storage Configuration Rds Configuration Field Mapping 
- Names of the fields to which to map information about the vector store. This block supports the following arguments:
- credentialsSecret StringArn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Amazon RDS database.
- databaseName String
- Name of your Amazon RDS database.
- resourceArn String
- ARN of the vector store.
- tableName String
- Name of the table in the database.
- fieldMapping AgentKnowledge Base Storage Configuration Rds Configuration Field Mapping 
- Names of the fields to which to map information about the vector store. This block supports the following arguments:
- credentialsSecret stringArn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Amazon RDS database.
- databaseName string
- Name of your Amazon RDS database.
- resourceArn string
- ARN of the vector store.
- tableName string
- Name of the table in the database.
- fieldMapping AgentKnowledge Base Storage Configuration Rds Configuration Field Mapping 
- Names of the fields to which to map information about the vector store. This block supports the following arguments:
- credentials_secret_ strarn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Amazon RDS database.
- database_name str
- Name of your Amazon RDS database.
- resource_arn str
- ARN of the vector store.
- table_name str
- Name of the table in the database.
- field_mapping AgentKnowledge Base Storage Configuration Rds Configuration Field Mapping 
- Names of the fields to which to map information about the vector store. This block supports the following arguments:
- credentialsSecret StringArn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Amazon RDS database.
- databaseName String
- Name of your Amazon RDS database.
- resourceArn String
- ARN of the vector store.
- tableName String
- Name of the table in the database.
- fieldMapping Property Map
- Names of the fields to which to map information about the vector store. This block supports the following arguments:
AgentKnowledgeBaseStorageConfigurationRdsConfigurationFieldMapping, AgentKnowledgeBaseStorageConfigurationRdsConfigurationFieldMappingArgs                  
- MetadataField string
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- PrimaryKey stringField 
- Name of the field in which Amazon Bedrock stores the ID for each entry.
- TextField string
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- VectorField string
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- MetadataField string
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- PrimaryKey stringField 
- Name of the field in which Amazon Bedrock stores the ID for each entry.
- TextField string
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- VectorField string
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- metadataField String
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- primaryKey StringField 
- Name of the field in which Amazon Bedrock stores the ID for each entry.
- textField String
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- vectorField String
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- metadataField string
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- primaryKey stringField 
- Name of the field in which Amazon Bedrock stores the ID for each entry.
- textField string
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- vectorField string
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- metadata_field str
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- primary_key_ strfield 
- Name of the field in which Amazon Bedrock stores the ID for each entry.
- text_field str
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- vector_field str
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- metadataField String
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- primaryKey StringField 
- Name of the field in which Amazon Bedrock stores the ID for each entry.
- textField String
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- vectorField String
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
AgentKnowledgeBaseStorageConfigurationRedisEnterpriseCloudConfiguration, AgentKnowledgeBaseStorageConfigurationRedisEnterpriseCloudConfigurationArgs                  
- CredentialsSecret stringArn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Redis Enterprise Cloud database.
- Endpoint string
- Endpoint URL of the Redis Enterprise Cloud database.
- VectorIndex stringName 
- Name of the vector index.
- FieldMapping AgentKnowledge Base Storage Configuration Redis Enterprise Cloud Configuration Field Mapping 
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- CredentialsSecret stringArn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Redis Enterprise Cloud database.
- Endpoint string
- Endpoint URL of the Redis Enterprise Cloud database.
- VectorIndex stringName 
- Name of the vector index.
- FieldMapping AgentKnowledge Base Storage Configuration Redis Enterprise Cloud Configuration Field Mapping 
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- credentialsSecret StringArn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Redis Enterprise Cloud database.
- endpoint String
- Endpoint URL of the Redis Enterprise Cloud database.
- vectorIndex StringName 
- Name of the vector index.
- fieldMapping AgentKnowledge Base Storage Configuration Redis Enterprise Cloud Configuration Field Mapping 
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- credentialsSecret stringArn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Redis Enterprise Cloud database.
- endpoint string
- Endpoint URL of the Redis Enterprise Cloud database.
- vectorIndex stringName 
- Name of the vector index.
- fieldMapping AgentKnowledge Base Storage Configuration Redis Enterprise Cloud Configuration Field Mapping 
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- credentials_secret_ strarn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Redis Enterprise Cloud database.
- endpoint str
- Endpoint URL of the Redis Enterprise Cloud database.
- vector_index_ strname 
- Name of the vector index.
- field_mapping AgentKnowledge Base Storage Configuration Redis Enterprise Cloud Configuration Field Mapping 
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
- credentialsSecret StringArn 
- ARN of the secret that you created in AWS Secrets Manager that is linked to your Redis Enterprise Cloud database.
- endpoint String
- Endpoint URL of the Redis Enterprise Cloud database.
- vectorIndex StringName 
- Name of the vector index.
- fieldMapping Property Map
- The names of the fields to which to map information about the vector store. This block supports the following arguments:
AgentKnowledgeBaseStorageConfigurationRedisEnterpriseCloudConfigurationFieldMapping, AgentKnowledgeBaseStorageConfigurationRedisEnterpriseCloudConfigurationFieldMappingArgs                      
- MetadataField string
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- TextField string
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- VectorField string
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- MetadataField string
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- TextField string
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- VectorField string
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- metadataField String
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- textField String
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- vectorField String
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- metadataField string
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- textField string
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- vectorField string
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- metadata_field str
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- text_field str
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- vector_field str
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- metadataField String
- Name of the field in which Amazon Bedrock stores metadata about the vector store.
- textField String
- Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- vectorField String
- Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
AgentKnowledgeBaseTimeouts, AgentKnowledgeBaseTimeoutsArgs        
- Create string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- Delete string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- Update string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- Create string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- Delete string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- Update string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- update String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- update string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create str
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete str
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- update str
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- update String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
Import
Using pulumi import, import Agents for Amazon Bedrock Knowledge Base using the knowledge base ID. For example:
$ pulumi import aws:bedrock/agentKnowledgeBase:AgentKnowledgeBase example EMDPPAYPZI
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- AWS Classic pulumi/pulumi-aws
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the awsTerraform Provider.