aws.bedrock.AgentAgent
Explore with Pulumi AI
Resource for managing an AWS Agents for Amazon Bedrock Agent.
Example Usage
Basic Usage
import * as pulumi from "@pulumi/pulumi";
import * as aws from "@pulumi/aws";
const current = aws.getCallerIdentity({});
const currentGetPartition = aws.getPartition({});
const currentGetRegion = aws.getRegion({});
const exampleAgentTrust = Promise.all([current, currentGetPartition, currentGetRegion, current]).then(([current, currentGetPartition, currentGetRegion, current1]) => aws.iam.getPolicyDocument({
    statements: [{
        actions: ["sts:AssumeRole"],
        principals: [{
            identifiers: ["bedrock.amazonaws.com"],
            type: "Service",
        }],
        conditions: [
            {
                test: "StringEquals",
                values: [current.accountId],
                variable: "aws:SourceAccount",
            },
            {
                test: "ArnLike",
                values: [`arn:${currentGetPartition.partition}:bedrock:${currentGetRegion.name}:${current1.accountId}:agent/*`],
                variable: "AWS:SourceArn",
            },
        ],
    }],
}));
const exampleAgentPermissions = Promise.all([currentGetPartition, currentGetRegion]).then(([currentGetPartition, currentGetRegion]) => aws.iam.getPolicyDocument({
    statements: [{
        actions: ["bedrock:InvokeModel"],
        resources: [`arn:${currentGetPartition.partition}:bedrock:${currentGetRegion.name}::foundation-model/anthropic.claude-v2`],
    }],
}));
const example = new aws.iam.Role("example", {
    assumeRolePolicy: exampleAgentTrust.then(exampleAgentTrust => exampleAgentTrust.json),
    namePrefix: "AmazonBedrockExecutionRoleForAgents_",
});
const exampleRolePolicy = new aws.iam.RolePolicy("example", {
    policy: exampleAgentPermissions.then(exampleAgentPermissions => exampleAgentPermissions.json),
    role: example.id,
});
const exampleAgentAgent = new aws.bedrock.AgentAgent("example", {
    agentName: "my-agent-name",
    agentResourceRoleArn: example.arn,
    idleSessionTtlInSeconds: 500,
    foundationModel: "anthropic.claude-v2",
});
import pulumi
import pulumi_aws as aws
current = aws.get_caller_identity()
current_get_partition = aws.get_partition()
current_get_region = aws.get_region()
example_agent_trust = aws.iam.get_policy_document(statements=[{
    "actions": ["sts:AssumeRole"],
    "principals": [{
        "identifiers": ["bedrock.amazonaws.com"],
        "type": "Service",
    }],
    "conditions": [
        {
            "test": "StringEquals",
            "values": [current.account_id],
            "variable": "aws:SourceAccount",
        },
        {
            "test": "ArnLike",
            "values": [f"arn:{current_get_partition.partition}:bedrock:{current_get_region.name}:{current.account_id}:agent/*"],
            "variable": "AWS:SourceArn",
        },
    ],
}])
example_agent_permissions = aws.iam.get_policy_document(statements=[{
    "actions": ["bedrock:InvokeModel"],
    "resources": [f"arn:{current_get_partition.partition}:bedrock:{current_get_region.name}::foundation-model/anthropic.claude-v2"],
}])
example = aws.iam.Role("example",
    assume_role_policy=example_agent_trust.json,
    name_prefix="AmazonBedrockExecutionRoleForAgents_")
example_role_policy = aws.iam.RolePolicy("example",
    policy=example_agent_permissions.json,
    role=example.id)
example_agent_agent = aws.bedrock.AgentAgent("example",
    agent_name="my-agent-name",
    agent_resource_role_arn=example.arn,
    idle_session_ttl_in_seconds=500,
    foundation_model="anthropic.claude-v2")
package main
import (
	"fmt"
	"github.com/pulumi/pulumi-aws/sdk/v6/go/aws"
	"github.com/pulumi/pulumi-aws/sdk/v6/go/aws/bedrock"
	"github.com/pulumi/pulumi-aws/sdk/v6/go/aws/iam"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
current, err := aws.GetCallerIdentity(ctx, &aws.GetCallerIdentityArgs{
}, nil);
if err != nil {
return err
}
currentGetPartition, err := aws.GetPartition(ctx, &aws.GetPartitionArgs{
}, nil);
if err != nil {
return err
}
currentGetRegion, err := aws.GetRegion(ctx, &aws.GetRegionArgs{
}, nil);
if err != nil {
return err
}
exampleAgentTrust, err := iam.GetPolicyDocument(ctx, &iam.GetPolicyDocumentArgs{
Statements: []iam.GetPolicyDocumentStatement{
{
Actions: []string{
"sts:AssumeRole",
},
Principals: []iam.GetPolicyDocumentStatementPrincipal{
{
Identifiers: []string{
"bedrock.amazonaws.com",
},
Type: "Service",
},
},
Conditions: []iam.GetPolicyDocumentStatementCondition{
{
Test: "StringEquals",
Values: interface{}{
current.AccountId,
},
Variable: "aws:SourceAccount",
},
{
Test: "ArnLike",
Values: []string{
fmt.Sprintf("arn:%v:bedrock:%v:%v:agent/*", currentGetPartition.Partition, currentGetRegion.Name, current.AccountId),
},
Variable: "AWS:SourceArn",
},
},
},
},
}, nil);
if err != nil {
return err
}
exampleAgentPermissions, err := iam.GetPolicyDocument(ctx, &iam.GetPolicyDocumentArgs{
Statements: []iam.GetPolicyDocumentStatement{
{
Actions: []string{
"bedrock:InvokeModel",
},
Resources: []string{
fmt.Sprintf("arn:%v:bedrock:%v::foundation-model/anthropic.claude-v2", currentGetPartition.Partition, currentGetRegion.Name),
},
},
},
}, nil);
if err != nil {
return err
}
example, err := iam.NewRole(ctx, "example", &iam.RoleArgs{
AssumeRolePolicy: pulumi.String(exampleAgentTrust.Json),
NamePrefix: pulumi.String("AmazonBedrockExecutionRoleForAgents_"),
})
if err != nil {
return err
}
_, err = iam.NewRolePolicy(ctx, "example", &iam.RolePolicyArgs{
Policy: pulumi.String(exampleAgentPermissions.Json),
Role: example.ID(),
})
if err != nil {
return err
}
_, err = bedrock.NewAgentAgent(ctx, "example", &bedrock.AgentAgentArgs{
AgentName: pulumi.String("my-agent-name"),
AgentResourceRoleArn: example.Arn,
IdleSessionTtlInSeconds: pulumi.Int(500),
FoundationModel: pulumi.String("anthropic.claude-v2"),
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Aws = Pulumi.Aws;
return await Deployment.RunAsync(() => 
{
    var current = Aws.GetCallerIdentity.Invoke();
    var currentGetPartition = Aws.GetPartition.Invoke();
    var currentGetRegion = Aws.GetRegion.Invoke();
    var exampleAgentTrust = Aws.Iam.GetPolicyDocument.Invoke(new()
    {
        Statements = new[]
        {
            new Aws.Iam.Inputs.GetPolicyDocumentStatementInputArgs
            {
                Actions = new[]
                {
                    "sts:AssumeRole",
                },
                Principals = new[]
                {
                    new Aws.Iam.Inputs.GetPolicyDocumentStatementPrincipalInputArgs
                    {
                        Identifiers = new[]
                        {
                            "bedrock.amazonaws.com",
                        },
                        Type = "Service",
                    },
                },
                Conditions = new[]
                {
                    new Aws.Iam.Inputs.GetPolicyDocumentStatementConditionInputArgs
                    {
                        Test = "StringEquals",
                        Values = new[]
                        {
                            current.Apply(getCallerIdentityResult => getCallerIdentityResult.AccountId),
                        },
                        Variable = "aws:SourceAccount",
                    },
                    new Aws.Iam.Inputs.GetPolicyDocumentStatementConditionInputArgs
                    {
                        Test = "ArnLike",
                        Values = new[]
                        {
                            $"arn:{currentGetPartition.Apply(getPartitionResult => getPartitionResult.Partition)}:bedrock:{currentGetRegion.Apply(getRegionResult => getRegionResult.Name)}:{current.Apply(getCallerIdentityResult => getCallerIdentityResult.AccountId)}:agent/*",
                        },
                        Variable = "AWS:SourceArn",
                    },
                },
            },
        },
    });
    var exampleAgentPermissions = Aws.Iam.GetPolicyDocument.Invoke(new()
    {
        Statements = new[]
        {
            new Aws.Iam.Inputs.GetPolicyDocumentStatementInputArgs
            {
                Actions = new[]
                {
                    "bedrock:InvokeModel",
                },
                Resources = new[]
                {
                    $"arn:{currentGetPartition.Apply(getPartitionResult => getPartitionResult.Partition)}:bedrock:{currentGetRegion.Apply(getRegionResult => getRegionResult.Name)}::foundation-model/anthropic.claude-v2",
                },
            },
        },
    });
    var example = new Aws.Iam.Role("example", new()
    {
        AssumeRolePolicy = exampleAgentTrust.Apply(getPolicyDocumentResult => getPolicyDocumentResult.Json),
        NamePrefix = "AmazonBedrockExecutionRoleForAgents_",
    });
    var exampleRolePolicy = new Aws.Iam.RolePolicy("example", new()
    {
        Policy = exampleAgentPermissions.Apply(getPolicyDocumentResult => getPolicyDocumentResult.Json),
        Role = example.Id,
    });
    var exampleAgentAgent = new Aws.Bedrock.AgentAgent("example", new()
    {
        AgentName = "my-agent-name",
        AgentResourceRoleArn = example.Arn,
        IdleSessionTtlInSeconds = 500,
        FoundationModel = "anthropic.claude-v2",
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.aws.AwsFunctions;
import com.pulumi.aws.inputs.GetCallerIdentityArgs;
import com.pulumi.aws.inputs.GetPartitionArgs;
import com.pulumi.aws.inputs.GetRegionArgs;
import com.pulumi.aws.iam.IamFunctions;
import com.pulumi.aws.iam.inputs.GetPolicyDocumentArgs;
import com.pulumi.aws.iam.Role;
import com.pulumi.aws.iam.RoleArgs;
import com.pulumi.aws.iam.RolePolicy;
import com.pulumi.aws.iam.RolePolicyArgs;
import com.pulumi.aws.bedrock.AgentAgent;
import com.pulumi.aws.bedrock.AgentAgentArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        final var current = AwsFunctions.getCallerIdentity();
        final var currentGetPartition = AwsFunctions.getPartition();
        final var currentGetRegion = AwsFunctions.getRegion();
        final var exampleAgentTrust = IamFunctions.getPolicyDocument(GetPolicyDocumentArgs.builder()
            .statements(GetPolicyDocumentStatementArgs.builder()
                .actions("sts:AssumeRole")
                .principals(GetPolicyDocumentStatementPrincipalArgs.builder()
                    .identifiers("bedrock.amazonaws.com")
                    .type("Service")
                    .build())
                .conditions(                
                    GetPolicyDocumentStatementConditionArgs.builder()
                        .test("StringEquals")
                        .values(current.applyValue(getCallerIdentityResult -> getCallerIdentityResult.accountId()))
                        .variable("aws:SourceAccount")
                        .build(),
                    GetPolicyDocumentStatementConditionArgs.builder()
                        .test("ArnLike")
                        .values(String.format("arn:%s:bedrock:%s:%s:agent/*", currentGetPartition.applyValue(getPartitionResult -> getPartitionResult.partition()),currentGetRegion.applyValue(getRegionResult -> getRegionResult.name()),current.applyValue(getCallerIdentityResult -> getCallerIdentityResult.accountId())))
                        .variable("AWS:SourceArn")
                        .build())
                .build())
            .build());
        final var exampleAgentPermissions = IamFunctions.getPolicyDocument(GetPolicyDocumentArgs.builder()
            .statements(GetPolicyDocumentStatementArgs.builder()
                .actions("bedrock:InvokeModel")
                .resources(String.format("arn:%s:bedrock:%s::foundation-model/anthropic.claude-v2", currentGetPartition.applyValue(getPartitionResult -> getPartitionResult.partition()),currentGetRegion.applyValue(getRegionResult -> getRegionResult.name())))
                .build())
            .build());
        var example = new Role("example", RoleArgs.builder()
            .assumeRolePolicy(exampleAgentTrust.applyValue(getPolicyDocumentResult -> getPolicyDocumentResult.json()))
            .namePrefix("AmazonBedrockExecutionRoleForAgents_")
            .build());
        var exampleRolePolicy = new RolePolicy("exampleRolePolicy", RolePolicyArgs.builder()
            .policy(exampleAgentPermissions.applyValue(getPolicyDocumentResult -> getPolicyDocumentResult.json()))
            .role(example.id())
            .build());
        var exampleAgentAgent = new AgentAgent("exampleAgentAgent", AgentAgentArgs.builder()
            .agentName("my-agent-name")
            .agentResourceRoleArn(example.arn())
            .idleSessionTtlInSeconds(500)
            .foundationModel("anthropic.claude-v2")
            .build());
    }
}
resources:
  example:
    type: aws:iam:Role
    properties:
      assumeRolePolicy: ${exampleAgentTrust.json}
      namePrefix: AmazonBedrockExecutionRoleForAgents_
  exampleRolePolicy:
    type: aws:iam:RolePolicy
    name: example
    properties:
      policy: ${exampleAgentPermissions.json}
      role: ${example.id}
  exampleAgentAgent:
    type: aws:bedrock:AgentAgent
    name: example
    properties:
      agentName: my-agent-name
      agentResourceRoleArn: ${example.arn}
      idleSessionTtlInSeconds: 500
      foundationModel: anthropic.claude-v2
variables:
  current:
    fn::invoke:
      function: aws:getCallerIdentity
      arguments: {}
  currentGetPartition:
    fn::invoke:
      function: aws:getPartition
      arguments: {}
  currentGetRegion:
    fn::invoke:
      function: aws:getRegion
      arguments: {}
  exampleAgentTrust:
    fn::invoke:
      function: aws:iam:getPolicyDocument
      arguments:
        statements:
          - actions:
              - sts:AssumeRole
            principals:
              - identifiers:
                  - bedrock.amazonaws.com
                type: Service
            conditions:
              - test: StringEquals
                values:
                  - ${current.accountId}
                variable: aws:SourceAccount
              - test: ArnLike
                values:
                  - arn:${currentGetPartition.partition}:bedrock:${currentGetRegion.name}:${current.accountId}:agent/*
                variable: AWS:SourceArn
  exampleAgentPermissions:
    fn::invoke:
      function: aws:iam:getPolicyDocument
      arguments:
        statements:
          - actions:
              - bedrock:InvokeModel
            resources:
              - arn:${currentGetPartition.partition}:bedrock:${currentGetRegion.name}::foundation-model/anthropic.claude-v2
Create AgentAgent Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new AgentAgent(name: string, args: AgentAgentArgs, opts?: CustomResourceOptions);@overload
def AgentAgent(resource_name: str,
               args: AgentAgentArgs,
               opts: Optional[ResourceOptions] = None)
@overload
def AgentAgent(resource_name: str,
               opts: Optional[ResourceOptions] = None,
               foundation_model: Optional[str] = None,
               agent_name: Optional[str] = None,
               agent_resource_role_arn: Optional[str] = None,
               guardrail_configurations: Optional[Sequence[AgentAgentGuardrailConfigurationArgs]] = None,
               description: Optional[str] = None,
               customer_encryption_key_arn: Optional[str] = None,
               agent_collaboration: Optional[str] = None,
               idle_session_ttl_in_seconds: Optional[int] = None,
               instruction: Optional[str] = None,
               prepare_agent: Optional[bool] = None,
               prompt_override_configurations: Optional[Sequence[AgentAgentPromptOverrideConfigurationArgs]] = None,
               skip_resource_in_use_check: Optional[bool] = None,
               tags: Optional[Mapping[str, str]] = None,
               timeouts: Optional[AgentAgentTimeoutsArgs] = None)func NewAgentAgent(ctx *Context, name string, args AgentAgentArgs, opts ...ResourceOption) (*AgentAgent, error)public AgentAgent(string name, AgentAgentArgs args, CustomResourceOptions? opts = null)
public AgentAgent(String name, AgentAgentArgs args)
public AgentAgent(String name, AgentAgentArgs args, CustomResourceOptions options)
type: aws:bedrock:AgentAgent
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args AgentAgentArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args AgentAgentArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args AgentAgentArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args AgentAgentArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args AgentAgentArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var agentAgentResource = new Aws.Bedrock.AgentAgent("agentAgentResource", new()
{
    FoundationModel = "string",
    AgentName = "string",
    AgentResourceRoleArn = "string",
    GuardrailConfigurations = new[]
    {
        new Aws.Bedrock.Inputs.AgentAgentGuardrailConfigurationArgs
        {
            GuardrailIdentifier = "string",
            GuardrailVersion = "string",
        },
    },
    Description = "string",
    CustomerEncryptionKeyArn = "string",
    AgentCollaboration = "string",
    IdleSessionTtlInSeconds = 0,
    Instruction = "string",
    PrepareAgent = false,
    PromptOverrideConfigurations = new[]
    {
        new Aws.Bedrock.Inputs.AgentAgentPromptOverrideConfigurationArgs
        {
            OverrideLambda = "string",
            PromptConfigurations = new[]
            {
                new Aws.Bedrock.Inputs.AgentAgentPromptOverrideConfigurationPromptConfigurationArgs
                {
                    BasePromptTemplate = "string",
                    InferenceConfigurations = new[]
                    {
                        new Aws.Bedrock.Inputs.AgentAgentPromptOverrideConfigurationPromptConfigurationInferenceConfigurationArgs
                        {
                            MaxLength = 0,
                            StopSequences = new[]
                            {
                                "string",
                            },
                            Temperature = 0,
                            TopK = 0,
                            TopP = 0,
                        },
                    },
                    ParserMode = "string",
                    PromptCreationMode = "string",
                    PromptState = "string",
                    PromptType = "string",
                },
            },
        },
    },
    SkipResourceInUseCheck = false,
    Tags = 
    {
        { "string", "string" },
    },
    Timeouts = new Aws.Bedrock.Inputs.AgentAgentTimeoutsArgs
    {
        Create = "string",
        Delete = "string",
        Update = "string",
    },
});
example, err := bedrock.NewAgentAgent(ctx, "agentAgentResource", &bedrock.AgentAgentArgs{
	FoundationModel:      pulumi.String("string"),
	AgentName:            pulumi.String("string"),
	AgentResourceRoleArn: pulumi.String("string"),
	GuardrailConfigurations: bedrock.AgentAgentGuardrailConfigurationArray{
		&bedrock.AgentAgentGuardrailConfigurationArgs{
			GuardrailIdentifier: pulumi.String("string"),
			GuardrailVersion:    pulumi.String("string"),
		},
	},
	Description:              pulumi.String("string"),
	CustomerEncryptionKeyArn: pulumi.String("string"),
	AgentCollaboration:       pulumi.String("string"),
	IdleSessionTtlInSeconds:  pulumi.Int(0),
	Instruction:              pulumi.String("string"),
	PrepareAgent:             pulumi.Bool(false),
	PromptOverrideConfigurations: bedrock.AgentAgentPromptOverrideConfigurationArray{
		&bedrock.AgentAgentPromptOverrideConfigurationArgs{
			OverrideLambda: pulumi.String("string"),
			PromptConfigurations: bedrock.AgentAgentPromptOverrideConfigurationPromptConfigurationArray{
				&bedrock.AgentAgentPromptOverrideConfigurationPromptConfigurationArgs{
					BasePromptTemplate: pulumi.String("string"),
					InferenceConfigurations: bedrock.AgentAgentPromptOverrideConfigurationPromptConfigurationInferenceConfigurationArray{
						&bedrock.AgentAgentPromptOverrideConfigurationPromptConfigurationInferenceConfigurationArgs{
							MaxLength: pulumi.Int(0),
							StopSequences: pulumi.StringArray{
								pulumi.String("string"),
							},
							Temperature: pulumi.Float64(0),
							TopK:        pulumi.Int(0),
							TopP:        pulumi.Float64(0),
						},
					},
					ParserMode:         pulumi.String("string"),
					PromptCreationMode: pulumi.String("string"),
					PromptState:        pulumi.String("string"),
					PromptType:         pulumi.String("string"),
				},
			},
		},
	},
	SkipResourceInUseCheck: pulumi.Bool(false),
	Tags: pulumi.StringMap{
		"string": pulumi.String("string"),
	},
	Timeouts: &bedrock.AgentAgentTimeoutsArgs{
		Create: pulumi.String("string"),
		Delete: pulumi.String("string"),
		Update: pulumi.String("string"),
	},
})
var agentAgentResource = new AgentAgent("agentAgentResource", AgentAgentArgs.builder()
    .foundationModel("string")
    .agentName("string")
    .agentResourceRoleArn("string")
    .guardrailConfigurations(AgentAgentGuardrailConfigurationArgs.builder()
        .guardrailIdentifier("string")
        .guardrailVersion("string")
        .build())
    .description("string")
    .customerEncryptionKeyArn("string")
    .agentCollaboration("string")
    .idleSessionTtlInSeconds(0)
    .instruction("string")
    .prepareAgent(false)
    .promptOverrideConfigurations(AgentAgentPromptOverrideConfigurationArgs.builder()
        .overrideLambda("string")
        .promptConfigurations(AgentAgentPromptOverrideConfigurationPromptConfigurationArgs.builder()
            .basePromptTemplate("string")
            .inferenceConfigurations(AgentAgentPromptOverrideConfigurationPromptConfigurationInferenceConfigurationArgs.builder()
                .maxLength(0)
                .stopSequences("string")
                .temperature(0)
                .topK(0)
                .topP(0)
                .build())
            .parserMode("string")
            .promptCreationMode("string")
            .promptState("string")
            .promptType("string")
            .build())
        .build())
    .skipResourceInUseCheck(false)
    .tags(Map.of("string", "string"))
    .timeouts(AgentAgentTimeoutsArgs.builder()
        .create("string")
        .delete("string")
        .update("string")
        .build())
    .build());
agent_agent_resource = aws.bedrock.AgentAgent("agentAgentResource",
    foundation_model="string",
    agent_name="string",
    agent_resource_role_arn="string",
    guardrail_configurations=[{
        "guardrail_identifier": "string",
        "guardrail_version": "string",
    }],
    description="string",
    customer_encryption_key_arn="string",
    agent_collaboration="string",
    idle_session_ttl_in_seconds=0,
    instruction="string",
    prepare_agent=False,
    prompt_override_configurations=[{
        "override_lambda": "string",
        "prompt_configurations": [{
            "base_prompt_template": "string",
            "inference_configurations": [{
                "max_length": 0,
                "stop_sequences": ["string"],
                "temperature": 0,
                "top_k": 0,
                "top_p": 0,
            }],
            "parser_mode": "string",
            "prompt_creation_mode": "string",
            "prompt_state": "string",
            "prompt_type": "string",
        }],
    }],
    skip_resource_in_use_check=False,
    tags={
        "string": "string",
    },
    timeouts={
        "create": "string",
        "delete": "string",
        "update": "string",
    })
const agentAgentResource = new aws.bedrock.AgentAgent("agentAgentResource", {
    foundationModel: "string",
    agentName: "string",
    agentResourceRoleArn: "string",
    guardrailConfigurations: [{
        guardrailIdentifier: "string",
        guardrailVersion: "string",
    }],
    description: "string",
    customerEncryptionKeyArn: "string",
    agentCollaboration: "string",
    idleSessionTtlInSeconds: 0,
    instruction: "string",
    prepareAgent: false,
    promptOverrideConfigurations: [{
        overrideLambda: "string",
        promptConfigurations: [{
            basePromptTemplate: "string",
            inferenceConfigurations: [{
                maxLength: 0,
                stopSequences: ["string"],
                temperature: 0,
                topK: 0,
                topP: 0,
            }],
            parserMode: "string",
            promptCreationMode: "string",
            promptState: "string",
            promptType: "string",
        }],
    }],
    skipResourceInUseCheck: false,
    tags: {
        string: "string",
    },
    timeouts: {
        create: "string",
        "delete": "string",
        update: "string",
    },
});
type: aws:bedrock:AgentAgent
properties:
    agentCollaboration: string
    agentName: string
    agentResourceRoleArn: string
    customerEncryptionKeyArn: string
    description: string
    foundationModel: string
    guardrailConfigurations:
        - guardrailIdentifier: string
          guardrailVersion: string
    idleSessionTtlInSeconds: 0
    instruction: string
    prepareAgent: false
    promptOverrideConfigurations:
        - overrideLambda: string
          promptConfigurations:
            - basePromptTemplate: string
              inferenceConfigurations:
                - maxLength: 0
                  stopSequences:
                    - string
                  temperature: 0
                  topK: 0
                  topP: 0
              parserMode: string
              promptCreationMode: string
              promptState: string
              promptType: string
    skipResourceInUseCheck: false
    tags:
        string: string
    timeouts:
        create: string
        delete: string
        update: string
AgentAgent Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The AgentAgent resource accepts the following input properties:
- AgentName string
- Name of the agent.
- AgentResource stringRole Arn 
- ARN of the IAM role with permissions to invoke API operations on the agent.
- FoundationModel string
- Foundation model used for orchestration by the agent. - The following arguments are optional: 
- AgentCollaboration string
- Agents collaboration role. Valid values: SUPERVISOR,SUPERVISOR_ROUTER,DISABLED.
- CustomerEncryption stringKey Arn 
- ARN of the AWS KMS key that encrypts the agent.
- Description string
- Description of the agent.
- GuardrailConfigurations List<AgentAgent Guardrail Configuration> 
- Details about the guardrail associated with the agent. See guardrail_configurationBlock for details.
- IdleSession intTtl In Seconds 
- Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- Instruction string
- Instructions that tell the agent what it should do and how it should interact with users. The valid range is 40 - 8000 characters.
- PrepareAgent bool
- Whether to prepare the agent after creation or modification. Defaults to true.
- PromptOverride List<AgentConfigurations Agent Prompt Override Configuration> 
- Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See prompt_override_configurationBlock for details.
- SkipResource boolIn Use Check 
- Whether the in-use check is skipped when deleting the agent.
- Dictionary<string, string>
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Timeouts
AgentAgent Timeouts 
- AgentName string
- Name of the agent.
- AgentResource stringRole Arn 
- ARN of the IAM role with permissions to invoke API operations on the agent.
- FoundationModel string
- Foundation model used for orchestration by the agent. - The following arguments are optional: 
- AgentCollaboration string
- Agents collaboration role. Valid values: SUPERVISOR,SUPERVISOR_ROUTER,DISABLED.
- CustomerEncryption stringKey Arn 
- ARN of the AWS KMS key that encrypts the agent.
- Description string
- Description of the agent.
- GuardrailConfigurations []AgentAgent Guardrail Configuration Args 
- Details about the guardrail associated with the agent. See guardrail_configurationBlock for details.
- IdleSession intTtl In Seconds 
- Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- Instruction string
- Instructions that tell the agent what it should do and how it should interact with users. The valid range is 40 - 8000 characters.
- PrepareAgent bool
- Whether to prepare the agent after creation or modification. Defaults to true.
- PromptOverride []AgentConfigurations Agent Prompt Override Configuration Args 
- Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See prompt_override_configurationBlock for details.
- SkipResource boolIn Use Check 
- Whether the in-use check is skipped when deleting the agent.
- map[string]string
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Timeouts
AgentAgent Timeouts Args 
- agentName String
- Name of the agent.
- agentResource StringRole Arn 
- ARN of the IAM role with permissions to invoke API operations on the agent.
- foundationModel String
- Foundation model used for orchestration by the agent. - The following arguments are optional: 
- agentCollaboration String
- Agents collaboration role. Valid values: SUPERVISOR,SUPERVISOR_ROUTER,DISABLED.
- customerEncryption StringKey Arn 
- ARN of the AWS KMS key that encrypts the agent.
- description String
- Description of the agent.
- guardrailConfigurations List<AgentAgent Guardrail Configuration> 
- Details about the guardrail associated with the agent. See guardrail_configurationBlock for details.
- idleSession IntegerTtl In Seconds 
- Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction String
- Instructions that tell the agent what it should do and how it should interact with users. The valid range is 40 - 8000 characters.
- prepareAgent Boolean
- Whether to prepare the agent after creation or modification. Defaults to true.
- promptOverride List<AgentConfigurations Agent Prompt Override Configuration> 
- Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See prompt_override_configurationBlock for details.
- skipResource BooleanIn Use Check 
- Whether the in-use check is skipped when deleting the agent.
- Map<String,String>
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- timeouts
AgentAgent Timeouts 
- agentName string
- Name of the agent.
- agentResource stringRole Arn 
- ARN of the IAM role with permissions to invoke API operations on the agent.
- foundationModel string
- Foundation model used for orchestration by the agent. - The following arguments are optional: 
- agentCollaboration string
- Agents collaboration role. Valid values: SUPERVISOR,SUPERVISOR_ROUTER,DISABLED.
- customerEncryption stringKey Arn 
- ARN of the AWS KMS key that encrypts the agent.
- description string
- Description of the agent.
- guardrailConfigurations AgentAgent Guardrail Configuration[] 
- Details about the guardrail associated with the agent. See guardrail_configurationBlock for details.
- idleSession numberTtl In Seconds 
- Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction string
- Instructions that tell the agent what it should do and how it should interact with users. The valid range is 40 - 8000 characters.
- prepareAgent boolean
- Whether to prepare the agent after creation or modification. Defaults to true.
- promptOverride AgentConfigurations Agent Prompt Override Configuration[] 
- Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See prompt_override_configurationBlock for details.
- skipResource booleanIn Use Check 
- Whether the in-use check is skipped when deleting the agent.
- {[key: string]: string}
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- timeouts
AgentAgent Timeouts 
- agent_name str
- Name of the agent.
- agent_resource_ strrole_ arn 
- ARN of the IAM role with permissions to invoke API operations on the agent.
- foundation_model str
- Foundation model used for orchestration by the agent. - The following arguments are optional: 
- agent_collaboration str
- Agents collaboration role. Valid values: SUPERVISOR,SUPERVISOR_ROUTER,DISABLED.
- customer_encryption_ strkey_ arn 
- ARN of the AWS KMS key that encrypts the agent.
- description str
- Description of the agent.
- guardrail_configurations Sequence[AgentAgent Guardrail Configuration Args] 
- Details about the guardrail associated with the agent. See guardrail_configurationBlock for details.
- idle_session_ intttl_ in_ seconds 
- Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction str
- Instructions that tell the agent what it should do and how it should interact with users. The valid range is 40 - 8000 characters.
- prepare_agent bool
- Whether to prepare the agent after creation or modification. Defaults to true.
- prompt_override_ Sequence[Agentconfigurations Agent Prompt Override Configuration Args] 
- Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See prompt_override_configurationBlock for details.
- skip_resource_ boolin_ use_ check 
- Whether the in-use check is skipped when deleting the agent.
- Mapping[str, str]
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- timeouts
AgentAgent Timeouts Args 
- agentName String
- Name of the agent.
- agentResource StringRole Arn 
- ARN of the IAM role with permissions to invoke API operations on the agent.
- foundationModel String
- Foundation model used for orchestration by the agent. - The following arguments are optional: 
- agentCollaboration String
- Agents collaboration role. Valid values: SUPERVISOR,SUPERVISOR_ROUTER,DISABLED.
- customerEncryption StringKey Arn 
- ARN of the AWS KMS key that encrypts the agent.
- description String
- Description of the agent.
- guardrailConfigurations List<Property Map>
- Details about the guardrail associated with the agent. See guardrail_configurationBlock for details.
- idleSession NumberTtl In Seconds 
- Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction String
- Instructions that tell the agent what it should do and how it should interact with users. The valid range is 40 - 8000 characters.
- prepareAgent Boolean
- Whether to prepare the agent after creation or modification. Defaults to true.
- promptOverride List<Property Map>Configurations 
- Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See prompt_override_configurationBlock for details.
- skipResource BooleanIn Use Check 
- Whether the in-use check is skipped when deleting the agent.
- Map<String>
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- timeouts Property Map
Outputs
All input properties are implicitly available as output properties. Additionally, the AgentAgent resource produces the following output properties:
- AgentArn string
- ARN of the agent.
- AgentId string
- Unique identifier of the agent.
- AgentVersion string
- Version of the agent.
- Id string
- The provider-assigned unique ID for this managed resource.
- Dictionary<string, string>
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- AgentArn string
- ARN of the agent.
- AgentId string
- Unique identifier of the agent.
- AgentVersion string
- Version of the agent.
- Id string
- The provider-assigned unique ID for this managed resource.
- map[string]string
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- agentArn String
- ARN of the agent.
- agentId String
- Unique identifier of the agent.
- agentVersion String
- Version of the agent.
- id String
- The provider-assigned unique ID for this managed resource.
- Map<String,String>
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- agentArn string
- ARN of the agent.
- agentId string
- Unique identifier of the agent.
- agentVersion string
- Version of the agent.
- id string
- The provider-assigned unique ID for this managed resource.
- {[key: string]: string}
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- agent_arn str
- ARN of the agent.
- agent_id str
- Unique identifier of the agent.
- agent_version str
- Version of the agent.
- id str
- The provider-assigned unique ID for this managed resource.
- Mapping[str, str]
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- agentArn String
- ARN of the agent.
- agentId String
- Unique identifier of the agent.
- agentVersion String
- Version of the agent.
- id String
- The provider-assigned unique ID for this managed resource.
- Map<String>
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
Look up Existing AgentAgent Resource
Get an existing AgentAgent resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: AgentAgentState, opts?: CustomResourceOptions): AgentAgent@staticmethod
def get(resource_name: str,
        id: str,
        opts: Optional[ResourceOptions] = None,
        agent_arn: Optional[str] = None,
        agent_collaboration: Optional[str] = None,
        agent_id: Optional[str] = None,
        agent_name: Optional[str] = None,
        agent_resource_role_arn: Optional[str] = None,
        agent_version: Optional[str] = None,
        customer_encryption_key_arn: Optional[str] = None,
        description: Optional[str] = None,
        foundation_model: Optional[str] = None,
        guardrail_configurations: Optional[Sequence[AgentAgentGuardrailConfigurationArgs]] = None,
        idle_session_ttl_in_seconds: Optional[int] = None,
        instruction: Optional[str] = None,
        prepare_agent: Optional[bool] = None,
        prompt_override_configurations: Optional[Sequence[AgentAgentPromptOverrideConfigurationArgs]] = None,
        skip_resource_in_use_check: Optional[bool] = None,
        tags: Optional[Mapping[str, str]] = None,
        tags_all: Optional[Mapping[str, str]] = None,
        timeouts: Optional[AgentAgentTimeoutsArgs] = None) -> AgentAgentfunc GetAgentAgent(ctx *Context, name string, id IDInput, state *AgentAgentState, opts ...ResourceOption) (*AgentAgent, error)public static AgentAgent Get(string name, Input<string> id, AgentAgentState? state, CustomResourceOptions? opts = null)public static AgentAgent get(String name, Output<String> id, AgentAgentState state, CustomResourceOptions options)resources:  _:    type: aws:bedrock:AgentAgent    get:      id: ${id}- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- AgentArn string
- ARN of the agent.
- AgentCollaboration string
- Agents collaboration role. Valid values: SUPERVISOR,SUPERVISOR_ROUTER,DISABLED.
- AgentId string
- Unique identifier of the agent.
- AgentName string
- Name of the agent.
- AgentResource stringRole Arn 
- ARN of the IAM role with permissions to invoke API operations on the agent.
- AgentVersion string
- Version of the agent.
- CustomerEncryption stringKey Arn 
- ARN of the AWS KMS key that encrypts the agent.
- Description string
- Description of the agent.
- FoundationModel string
- Foundation model used for orchestration by the agent. - The following arguments are optional: 
- GuardrailConfigurations List<AgentAgent Guardrail Configuration> 
- Details about the guardrail associated with the agent. See guardrail_configurationBlock for details.
- IdleSession intTtl In Seconds 
- Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- Instruction string
- Instructions that tell the agent what it should do and how it should interact with users. The valid range is 40 - 8000 characters.
- PrepareAgent bool
- Whether to prepare the agent after creation or modification. Defaults to true.
- PromptOverride List<AgentConfigurations Agent Prompt Override Configuration> 
- Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See prompt_override_configurationBlock for details.
- SkipResource boolIn Use Check 
- Whether the in-use check is skipped when deleting the agent.
- Dictionary<string, string>
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Dictionary<string, string>
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- Timeouts
AgentAgent Timeouts 
- AgentArn string
- ARN of the agent.
- AgentCollaboration string
- Agents collaboration role. Valid values: SUPERVISOR,SUPERVISOR_ROUTER,DISABLED.
- AgentId string
- Unique identifier of the agent.
- AgentName string
- Name of the agent.
- AgentResource stringRole Arn 
- ARN of the IAM role with permissions to invoke API operations on the agent.
- AgentVersion string
- Version of the agent.
- CustomerEncryption stringKey Arn 
- ARN of the AWS KMS key that encrypts the agent.
- Description string
- Description of the agent.
- FoundationModel string
- Foundation model used for orchestration by the agent. - The following arguments are optional: 
- GuardrailConfigurations []AgentAgent Guardrail Configuration Args 
- Details about the guardrail associated with the agent. See guardrail_configurationBlock for details.
- IdleSession intTtl In Seconds 
- Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- Instruction string
- Instructions that tell the agent what it should do and how it should interact with users. The valid range is 40 - 8000 characters.
- PrepareAgent bool
- Whether to prepare the agent after creation or modification. Defaults to true.
- PromptOverride []AgentConfigurations Agent Prompt Override Configuration Args 
- Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See prompt_override_configurationBlock for details.
- SkipResource boolIn Use Check 
- Whether the in-use check is skipped when deleting the agent.
- map[string]string
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- map[string]string
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- Timeouts
AgentAgent Timeouts Args 
- agentArn String
- ARN of the agent.
- agentCollaboration String
- Agents collaboration role. Valid values: SUPERVISOR,SUPERVISOR_ROUTER,DISABLED.
- agentId String
- Unique identifier of the agent.
- agentName String
- Name of the agent.
- agentResource StringRole Arn 
- ARN of the IAM role with permissions to invoke API operations on the agent.
- agentVersion String
- Version of the agent.
- customerEncryption StringKey Arn 
- ARN of the AWS KMS key that encrypts the agent.
- description String
- Description of the agent.
- foundationModel String
- Foundation model used for orchestration by the agent. - The following arguments are optional: 
- guardrailConfigurations List<AgentAgent Guardrail Configuration> 
- Details about the guardrail associated with the agent. See guardrail_configurationBlock for details.
- idleSession IntegerTtl In Seconds 
- Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction String
- Instructions that tell the agent what it should do and how it should interact with users. The valid range is 40 - 8000 characters.
- prepareAgent Boolean
- Whether to prepare the agent after creation or modification. Defaults to true.
- promptOverride List<AgentConfigurations Agent Prompt Override Configuration> 
- Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See prompt_override_configurationBlock for details.
- skipResource BooleanIn Use Check 
- Whether the in-use check is skipped when deleting the agent.
- Map<String,String>
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Map<String,String>
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- timeouts
AgentAgent Timeouts 
- agentArn string
- ARN of the agent.
- agentCollaboration string
- Agents collaboration role. Valid values: SUPERVISOR,SUPERVISOR_ROUTER,DISABLED.
- agentId string
- Unique identifier of the agent.
- agentName string
- Name of the agent.
- agentResource stringRole Arn 
- ARN of the IAM role with permissions to invoke API operations on the agent.
- agentVersion string
- Version of the agent.
- customerEncryption stringKey Arn 
- ARN of the AWS KMS key that encrypts the agent.
- description string
- Description of the agent.
- foundationModel string
- Foundation model used for orchestration by the agent. - The following arguments are optional: 
- guardrailConfigurations AgentAgent Guardrail Configuration[] 
- Details about the guardrail associated with the agent. See guardrail_configurationBlock for details.
- idleSession numberTtl In Seconds 
- Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction string
- Instructions that tell the agent what it should do and how it should interact with users. The valid range is 40 - 8000 characters.
- prepareAgent boolean
- Whether to prepare the agent after creation or modification. Defaults to true.
- promptOverride AgentConfigurations Agent Prompt Override Configuration[] 
- Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See prompt_override_configurationBlock for details.
- skipResource booleanIn Use Check 
- Whether the in-use check is skipped when deleting the agent.
- {[key: string]: string}
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- {[key: string]: string}
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- timeouts
AgentAgent Timeouts 
- agent_arn str
- ARN of the agent.
- agent_collaboration str
- Agents collaboration role. Valid values: SUPERVISOR,SUPERVISOR_ROUTER,DISABLED.
- agent_id str
- Unique identifier of the agent.
- agent_name str
- Name of the agent.
- agent_resource_ strrole_ arn 
- ARN of the IAM role with permissions to invoke API operations on the agent.
- agent_version str
- Version of the agent.
- customer_encryption_ strkey_ arn 
- ARN of the AWS KMS key that encrypts the agent.
- description str
- Description of the agent.
- foundation_model str
- Foundation model used for orchestration by the agent. - The following arguments are optional: 
- guardrail_configurations Sequence[AgentAgent Guardrail Configuration Args] 
- Details about the guardrail associated with the agent. See guardrail_configurationBlock for details.
- idle_session_ intttl_ in_ seconds 
- Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction str
- Instructions that tell the agent what it should do and how it should interact with users. The valid range is 40 - 8000 characters.
- prepare_agent bool
- Whether to prepare the agent after creation or modification. Defaults to true.
- prompt_override_ Sequence[Agentconfigurations Agent Prompt Override Configuration Args] 
- Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See prompt_override_configurationBlock for details.
- skip_resource_ boolin_ use_ check 
- Whether the in-use check is skipped when deleting the agent.
- Mapping[str, str]
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Mapping[str, str]
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- timeouts
AgentAgent Timeouts Args 
- agentArn String
- ARN of the agent.
- agentCollaboration String
- Agents collaboration role. Valid values: SUPERVISOR,SUPERVISOR_ROUTER,DISABLED.
- agentId String
- Unique identifier of the agent.
- agentName String
- Name of the agent.
- agentResource StringRole Arn 
- ARN of the IAM role with permissions to invoke API operations on the agent.
- agentVersion String
- Version of the agent.
- customerEncryption StringKey Arn 
- ARN of the AWS KMS key that encrypts the agent.
- description String
- Description of the agent.
- foundationModel String
- Foundation model used for orchestration by the agent. - The following arguments are optional: 
- guardrailConfigurations List<Property Map>
- Details about the guardrail associated with the agent. See guardrail_configurationBlock for details.
- idleSession NumberTtl In Seconds 
- Number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent. A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
- instruction String
- Instructions that tell the agent what it should do and how it should interact with users. The valid range is 40 - 8000 characters.
- prepareAgent Boolean
- Whether to prepare the agent after creation or modification. Defaults to true.
- promptOverride List<Property Map>Configurations 
- Configurations to override prompt templates in different parts of an agent sequence. For more information, see Advanced prompts. See prompt_override_configurationBlock for details.
- skipResource BooleanIn Use Check 
- Whether the in-use check is skipped when deleting the agent.
- Map<String>
- Map of tags assigned to the resource. If configured with a provider default_tagsconfiguration block present, tags with matching keys will overwrite those defined at the provider-level.
- Map<String>
- Map of tags assigned to the resource, including those inherited from the provider default_tagsconfiguration block.
- timeouts Property Map
Supporting Types
AgentAgentGuardrailConfiguration, AgentAgentGuardrailConfigurationArgs        
- GuardrailIdentifier string
- Unique identifier of the guardrail.
- GuardrailVersion string
- Version of the guardrail.
- GuardrailIdentifier string
- Unique identifier of the guardrail.
- GuardrailVersion string
- Version of the guardrail.
- guardrailIdentifier String
- Unique identifier of the guardrail.
- guardrailVersion String
- Version of the guardrail.
- guardrailIdentifier string
- Unique identifier of the guardrail.
- guardrailVersion string
- Version of the guardrail.
- guardrail_identifier str
- Unique identifier of the guardrail.
- guardrail_version str
- Version of the guardrail.
- guardrailIdentifier String
- Unique identifier of the guardrail.
- guardrailVersion String
- Version of the guardrail.
AgentAgentPromptOverrideConfiguration, AgentAgentPromptOverrideConfigurationArgs          
- OverrideLambda string
- ARN of the Lambda function to use when parsing the raw foundation model output in parts of the agent sequence. If you specify this field, at least one of the prompt_configurationsblock must contain aparser_modevalue that is set toOVERRIDDEN.
- PromptConfigurations List<AgentAgent Prompt Override Configuration Prompt Configuration> 
- Configurations to override a prompt template in one part of an agent sequence. See prompt_configurationsBlock for details.
- OverrideLambda string
- ARN of the Lambda function to use when parsing the raw foundation model output in parts of the agent sequence. If you specify this field, at least one of the prompt_configurationsblock must contain aparser_modevalue that is set toOVERRIDDEN.
- PromptConfigurations []AgentAgent Prompt Override Configuration Prompt Configuration 
- Configurations to override a prompt template in one part of an agent sequence. See prompt_configurationsBlock for details.
- overrideLambda String
- ARN of the Lambda function to use when parsing the raw foundation model output in parts of the agent sequence. If you specify this field, at least one of the prompt_configurationsblock must contain aparser_modevalue that is set toOVERRIDDEN.
- promptConfigurations List<AgentAgent Prompt Override Configuration Prompt Configuration> 
- Configurations to override a prompt template in one part of an agent sequence. See prompt_configurationsBlock for details.
- overrideLambda string
- ARN of the Lambda function to use when parsing the raw foundation model output in parts of the agent sequence. If you specify this field, at least one of the prompt_configurationsblock must contain aparser_modevalue that is set toOVERRIDDEN.
- promptConfigurations AgentAgent Prompt Override Configuration Prompt Configuration[] 
- Configurations to override a prompt template in one part of an agent sequence. See prompt_configurationsBlock for details.
- override_lambda str
- ARN of the Lambda function to use when parsing the raw foundation model output in parts of the agent sequence. If you specify this field, at least one of the prompt_configurationsblock must contain aparser_modevalue that is set toOVERRIDDEN.
- prompt_configurations Sequence[AgentAgent Prompt Override Configuration Prompt Configuration] 
- Configurations to override a prompt template in one part of an agent sequence. See prompt_configurationsBlock for details.
- overrideLambda String
- ARN of the Lambda function to use when parsing the raw foundation model output in parts of the agent sequence. If you specify this field, at least one of the prompt_configurationsblock must contain aparser_modevalue that is set toOVERRIDDEN.
- promptConfigurations List<Property Map>
- Configurations to override a prompt template in one part of an agent sequence. See prompt_configurationsBlock for details.
AgentAgentPromptOverrideConfigurationPromptConfiguration, AgentAgentPromptOverrideConfigurationPromptConfigurationArgs              
- BasePrompt stringTemplate 
- prompt template with which to replace the default prompt template. You can use placeholder variables in the base prompt template to customize the prompt. For more information, see Prompt template placeholder variables.
- InferenceConfigurations List<AgentAgent Prompt Override Configuration Prompt Configuration Inference Configuration> 
- Inference parameters to use when the agent invokes a foundation model in the part of the agent sequence defined by the prompt_type. For more information, see Inference parameters for foundation models. Seeinference_configurationBlock for details.
- ParserMode string
- Whether to override the default parser Lambda function when parsing the raw foundation model output in the part of the agent sequence defined by the prompt_type. If you set the argument asOVERRIDDEN, theoverride_lambdaargument in theprompt_override_configurationblock must be specified with the ARN of a Lambda function. Valid values:DEFAULT,OVERRIDDEN.
- PromptCreation stringMode 
- Whether to override the default prompt template for this prompt_type. Set this argument toOVERRIDDENto use the prompt that you provide in thebase_prompt_template. If you leave it asDEFAULT, the agent uses a default prompt template. Valid values:DEFAULT,OVERRIDDEN.
- PromptState string
- Whether to allow the agent to carry out the step specified in the prompt_type. If you set this argument toDISABLED, the agent skips that step. Valid Values:ENABLED,DISABLED.
- PromptType string
- Step in the agent sequence that this prompt configuration applies to. Valid values: PRE_PROCESSING,ORCHESTRATION,POST_PROCESSING,KNOWLEDGE_BASE_RESPONSE_GENERATION.
- BasePrompt stringTemplate 
- prompt template with which to replace the default prompt template. You can use placeholder variables in the base prompt template to customize the prompt. For more information, see Prompt template placeholder variables.
- InferenceConfigurations []AgentAgent Prompt Override Configuration Prompt Configuration Inference Configuration 
- Inference parameters to use when the agent invokes a foundation model in the part of the agent sequence defined by the prompt_type. For more information, see Inference parameters for foundation models. Seeinference_configurationBlock for details.
- ParserMode string
- Whether to override the default parser Lambda function when parsing the raw foundation model output in the part of the agent sequence defined by the prompt_type. If you set the argument asOVERRIDDEN, theoverride_lambdaargument in theprompt_override_configurationblock must be specified with the ARN of a Lambda function. Valid values:DEFAULT,OVERRIDDEN.
- PromptCreation stringMode 
- Whether to override the default prompt template for this prompt_type. Set this argument toOVERRIDDENto use the prompt that you provide in thebase_prompt_template. If you leave it asDEFAULT, the agent uses a default prompt template. Valid values:DEFAULT,OVERRIDDEN.
- PromptState string
- Whether to allow the agent to carry out the step specified in the prompt_type. If you set this argument toDISABLED, the agent skips that step. Valid Values:ENABLED,DISABLED.
- PromptType string
- Step in the agent sequence that this prompt configuration applies to. Valid values: PRE_PROCESSING,ORCHESTRATION,POST_PROCESSING,KNOWLEDGE_BASE_RESPONSE_GENERATION.
- basePrompt StringTemplate 
- prompt template with which to replace the default prompt template. You can use placeholder variables in the base prompt template to customize the prompt. For more information, see Prompt template placeholder variables.
- inferenceConfigurations List<AgentAgent Prompt Override Configuration Prompt Configuration Inference Configuration> 
- Inference parameters to use when the agent invokes a foundation model in the part of the agent sequence defined by the prompt_type. For more information, see Inference parameters for foundation models. Seeinference_configurationBlock for details.
- parserMode String
- Whether to override the default parser Lambda function when parsing the raw foundation model output in the part of the agent sequence defined by the prompt_type. If you set the argument asOVERRIDDEN, theoverride_lambdaargument in theprompt_override_configurationblock must be specified with the ARN of a Lambda function. Valid values:DEFAULT,OVERRIDDEN.
- promptCreation StringMode 
- Whether to override the default prompt template for this prompt_type. Set this argument toOVERRIDDENto use the prompt that you provide in thebase_prompt_template. If you leave it asDEFAULT, the agent uses a default prompt template. Valid values:DEFAULT,OVERRIDDEN.
- promptState String
- Whether to allow the agent to carry out the step specified in the prompt_type. If you set this argument toDISABLED, the agent skips that step. Valid Values:ENABLED,DISABLED.
- promptType String
- Step in the agent sequence that this prompt configuration applies to. Valid values: PRE_PROCESSING,ORCHESTRATION,POST_PROCESSING,KNOWLEDGE_BASE_RESPONSE_GENERATION.
- basePrompt stringTemplate 
- prompt template with which to replace the default prompt template. You can use placeholder variables in the base prompt template to customize the prompt. For more information, see Prompt template placeholder variables.
- inferenceConfigurations AgentAgent Prompt Override Configuration Prompt Configuration Inference Configuration[] 
- Inference parameters to use when the agent invokes a foundation model in the part of the agent sequence defined by the prompt_type. For more information, see Inference parameters for foundation models. Seeinference_configurationBlock for details.
- parserMode string
- Whether to override the default parser Lambda function when parsing the raw foundation model output in the part of the agent sequence defined by the prompt_type. If you set the argument asOVERRIDDEN, theoverride_lambdaargument in theprompt_override_configurationblock must be specified with the ARN of a Lambda function. Valid values:DEFAULT,OVERRIDDEN.
- promptCreation stringMode 
- Whether to override the default prompt template for this prompt_type. Set this argument toOVERRIDDENto use the prompt that you provide in thebase_prompt_template. If you leave it asDEFAULT, the agent uses a default prompt template. Valid values:DEFAULT,OVERRIDDEN.
- promptState string
- Whether to allow the agent to carry out the step specified in the prompt_type. If you set this argument toDISABLED, the agent skips that step. Valid Values:ENABLED,DISABLED.
- promptType string
- Step in the agent sequence that this prompt configuration applies to. Valid values: PRE_PROCESSING,ORCHESTRATION,POST_PROCESSING,KNOWLEDGE_BASE_RESPONSE_GENERATION.
- base_prompt_ strtemplate 
- prompt template with which to replace the default prompt template. You can use placeholder variables in the base prompt template to customize the prompt. For more information, see Prompt template placeholder variables.
- inference_configurations Sequence[AgentAgent Prompt Override Configuration Prompt Configuration Inference Configuration] 
- Inference parameters to use when the agent invokes a foundation model in the part of the agent sequence defined by the prompt_type. For more information, see Inference parameters for foundation models. Seeinference_configurationBlock for details.
- parser_mode str
- Whether to override the default parser Lambda function when parsing the raw foundation model output in the part of the agent sequence defined by the prompt_type. If you set the argument asOVERRIDDEN, theoverride_lambdaargument in theprompt_override_configurationblock must be specified with the ARN of a Lambda function. Valid values:DEFAULT,OVERRIDDEN.
- prompt_creation_ strmode 
- Whether to override the default prompt template for this prompt_type. Set this argument toOVERRIDDENto use the prompt that you provide in thebase_prompt_template. If you leave it asDEFAULT, the agent uses a default prompt template. Valid values:DEFAULT,OVERRIDDEN.
- prompt_state str
- Whether to allow the agent to carry out the step specified in the prompt_type. If you set this argument toDISABLED, the agent skips that step. Valid Values:ENABLED,DISABLED.
- prompt_type str
- Step in the agent sequence that this prompt configuration applies to. Valid values: PRE_PROCESSING,ORCHESTRATION,POST_PROCESSING,KNOWLEDGE_BASE_RESPONSE_GENERATION.
- basePrompt StringTemplate 
- prompt template with which to replace the default prompt template. You can use placeholder variables in the base prompt template to customize the prompt. For more information, see Prompt template placeholder variables.
- inferenceConfigurations List<Property Map>
- Inference parameters to use when the agent invokes a foundation model in the part of the agent sequence defined by the prompt_type. For more information, see Inference parameters for foundation models. Seeinference_configurationBlock for details.
- parserMode String
- Whether to override the default parser Lambda function when parsing the raw foundation model output in the part of the agent sequence defined by the prompt_type. If you set the argument asOVERRIDDEN, theoverride_lambdaargument in theprompt_override_configurationblock must be specified with the ARN of a Lambda function. Valid values:DEFAULT,OVERRIDDEN.
- promptCreation StringMode 
- Whether to override the default prompt template for this prompt_type. Set this argument toOVERRIDDENto use the prompt that you provide in thebase_prompt_template. If you leave it asDEFAULT, the agent uses a default prompt template. Valid values:DEFAULT,OVERRIDDEN.
- promptState String
- Whether to allow the agent to carry out the step specified in the prompt_type. If you set this argument toDISABLED, the agent skips that step. Valid Values:ENABLED,DISABLED.
- promptType String
- Step in the agent sequence that this prompt configuration applies to. Valid values: PRE_PROCESSING,ORCHESTRATION,POST_PROCESSING,KNOWLEDGE_BASE_RESPONSE_GENERATION.
AgentAgentPromptOverrideConfigurationPromptConfigurationInferenceConfiguration, AgentAgentPromptOverrideConfigurationPromptConfigurationInferenceConfigurationArgs                  
- MaxLength int
- Maximum number of tokens to allow in the generated response.
- StopSequences List<string>
- List of stop sequences. A stop sequence is a sequence of characters that causes the model to stop generating the response.
- Temperature double
- Likelihood of the model selecting higher-probability options while generating a response. A lower value makes the model more likely to choose higher-probability options, while a higher value makes the model more likely to choose lower-probability options.
- TopK int
- Number of top most-likely candidates, between 0 and 500, from which the model chooses the next token in the sequence.
- TopP double
- Top percentage of the probability distribution of next tokens, between 0 and 1 (denoting 0% and 100%), from which the model chooses the next token in the sequence.
- MaxLength int
- Maximum number of tokens to allow in the generated response.
- StopSequences []string
- List of stop sequences. A stop sequence is a sequence of characters that causes the model to stop generating the response.
- Temperature float64
- Likelihood of the model selecting higher-probability options while generating a response. A lower value makes the model more likely to choose higher-probability options, while a higher value makes the model more likely to choose lower-probability options.
- TopK int
- Number of top most-likely candidates, between 0 and 500, from which the model chooses the next token in the sequence.
- TopP float64
- Top percentage of the probability distribution of next tokens, between 0 and 1 (denoting 0% and 100%), from which the model chooses the next token in the sequence.
- maxLength Integer
- Maximum number of tokens to allow in the generated response.
- stopSequences List<String>
- List of stop sequences. A stop sequence is a sequence of characters that causes the model to stop generating the response.
- temperature Double
- Likelihood of the model selecting higher-probability options while generating a response. A lower value makes the model more likely to choose higher-probability options, while a higher value makes the model more likely to choose lower-probability options.
- topK Integer
- Number of top most-likely candidates, between 0 and 500, from which the model chooses the next token in the sequence.
- topP Double
- Top percentage of the probability distribution of next tokens, between 0 and 1 (denoting 0% and 100%), from which the model chooses the next token in the sequence.
- maxLength number
- Maximum number of tokens to allow in the generated response.
- stopSequences string[]
- List of stop sequences. A stop sequence is a sequence of characters that causes the model to stop generating the response.
- temperature number
- Likelihood of the model selecting higher-probability options while generating a response. A lower value makes the model more likely to choose higher-probability options, while a higher value makes the model more likely to choose lower-probability options.
- topK number
- Number of top most-likely candidates, between 0 and 500, from which the model chooses the next token in the sequence.
- topP number
- Top percentage of the probability distribution of next tokens, between 0 and 1 (denoting 0% and 100%), from which the model chooses the next token in the sequence.
- max_length int
- Maximum number of tokens to allow in the generated response.
- stop_sequences Sequence[str]
- List of stop sequences. A stop sequence is a sequence of characters that causes the model to stop generating the response.
- temperature float
- Likelihood of the model selecting higher-probability options while generating a response. A lower value makes the model more likely to choose higher-probability options, while a higher value makes the model more likely to choose lower-probability options.
- top_k int
- Number of top most-likely candidates, between 0 and 500, from which the model chooses the next token in the sequence.
- top_p float
- Top percentage of the probability distribution of next tokens, between 0 and 1 (denoting 0% and 100%), from which the model chooses the next token in the sequence.
- maxLength Number
- Maximum number of tokens to allow in the generated response.
- stopSequences List<String>
- List of stop sequences. A stop sequence is a sequence of characters that causes the model to stop generating the response.
- temperature Number
- Likelihood of the model selecting higher-probability options while generating a response. A lower value makes the model more likely to choose higher-probability options, while a higher value makes the model more likely to choose lower-probability options.
- topK Number
- Number of top most-likely candidates, between 0 and 500, from which the model chooses the next token in the sequence.
- topP Number
- Top percentage of the probability distribution of next tokens, between 0 and 1 (denoting 0% and 100%), from which the model chooses the next token in the sequence.
AgentAgentTimeouts, AgentAgentTimeoutsArgs      
- Create string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- Delete string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- Update string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- Create string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- Delete string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- Update string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- update String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- update string
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create str
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete str
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- update str
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- create String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
- delete String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours). Setting a timeout for a Delete operation is only applicable if changes are saved into state before the destroy operation occurs.
- update String
- A string that can be parsed as a duration consisting of numbers and unit suffixes, such as "30s" or "2h45m". Valid time units are "s" (seconds), "m" (minutes), "h" (hours).
Import
Using pulumi import, import Agents for Amazon Bedrock Agent using the agent ID. For example:
$ pulumi import aws:bedrock/agentAgent:AgentAgent example GGRRAED6JP
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- AWS Classic pulumi/pulumi-aws
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the awsTerraform Provider.